

Windows Registry Forensics
Advanced Digital
Forensic Analysis of the
Windows Registry

This page intentionally left blank

Windows Registry Forensics
Advanced Digital
Forensic Analysis of the
Windows Registry

Harlan Carvey
Dave Hull, Technical Editor

AMSTERDAM  •  BOSTON  •  HEIDELBERG  •  LONDON
NEW YORK  •  OXFORD  •  PARIS  •  SAN DIEGO  •  SAN FRANCISCO

SINGAPORE  •  SYDNEY  •  TOKYO

Syngress is an imprint of Elsevier

Acquiring Editor: Angelina Ward
Development Editor: Heather Scherer
Project Manager: Danielle S. Miller
Designer: Kristen Davis

Syngress is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

© 2011 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing
from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies
and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing
Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods or professional practices, may become necessary. Practitioners and
researchers must always rely on their own experience and knowledge in evaluating and using any information or
methods described herein. In using such information or methods they should be mindful of their own safety and
the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for
any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from
any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Carvey, Harlan A.
 Windows Registry Forensics: Advanced Digital Forensic Analysis of the Windows Registry / Harlan Carvey.
 p. cm.
 Includes bibliographical references.
 ISBN 978-1-59749-580-6 (pbk.)
 1. Microsoft Windows (Computer file) 2. Operating systems (Computers) 3. Computer crimes—Investigation—
Methodology. 4. Computer networks—Security measures. 5. Computer security. 6. Component software. I. Title.
 HV8079.C65C373 2011
 363.25’62—dc22

2010043198
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-580-6

Printed in the United States of America
10 11 12 13 14    10 9 8 7 6 5 4 3 2 1

Typeset by: diacriTech, Chennai, India

For information on all Syngress publications visit our website at www.syngress.com

Dedication

To Terri and Kylie; you are my light and my foundation.

This page intentionally left blank

	 Contents   vii

Contents
Preface . ix
Acknowledgments . xv
About the Author . xvii

Chapter 1 Registry Analysis . 1
Introduction . . 1
What Is “Registry Analysis”? . . 3
What Is the Windows Registry? . . 14
Registry Structure . . 23
Summary . . 32
Frequently Asked Questions . 32
References . . 33

Chapter 2 Tools . . 35
Introduction . . 35
Live Analysis . 36
Summary . . 80
Frequently Asked Questions . 81
References . . 82

Chapter 3 Case Studies: The System . 85
Introduction . . 85
Security and SAM Hives . 86
System Hive . 102
Software Hive . 124
BCD Hive . 150
Summary . . 152
Frequently Asked Questions . 153
References . . 155

viii   Contents

Chapter 4 Case Studies: Tracking User Activity . 159
Introduction . . 159
Tracking User Activity . 161
Scenarios . . 195
Summary . . 201
References . . 201

Index . 203

	 Preface   ix

Preface
I am not an expert. I have never claimed to be an expert at anything
(at least not seriously done so), least of all an expert in forensic
analysis. I am not an expert in Windows Registry analysis. I am
simply, by profession, a responder and analyst with some work
and research experience in this area. I have also performed a
number of analysis engagements, in which information found
as part of Registry analysis has played a rather significant role. In
one such engagement, Registry analysis allowed me to provide
a compelling argument to demonstrate that files known to con-
tain credit card data had been neither found nor accessed by an
intruder, thereby reducing the subsequent costs (with respect to
notification and fines) to the customer. I have assisted with pro-
viding information to demonstrate that certain user accounts
had been used to access certain files. More importantly, I have
worked through the process of sharing what I have seen with oth-
ers, by writing this book and sharing what I’ve observed from a
practitioner’s perspective. I am not an expert.
When I sat down to write this book, I did so because even in

the year 2010, I am amazed at the number of analysts with whom
I speak that have no apparent idea of the forensic value of the
Windows Registry. Sometimes, when I talk to someone about
demonstrating that a user account was used to view files, I get a
blank stare. Or after talking about tracking USB devices across
systems and no one asks any questions, I get approached by a
dozen of the folks from the presentation, between the podium
and my exit. It seems that, in many instances, the “abandon
hope, all ye who enter here” warning that Microsoft displays on
its knowledge base articles regarding the Registry really do a good
job . . . of keeping the good guys out, as well as from “digging”
or investigating. Sadly, there’s nothing in that admonition that
states, “oh, yeah . . . the bad guys are all up in yer Registry!” As
a result, many analysts are consistently behind the power curve,
learning from the bad guys the new uses for the Registry (per-
sistence, data and executable storage, and so on), often months
after they have been established and used.
Windows systems make use of a number of different file types

that provide a great deal of value to incident responders and
forensic analysts alike, and the Registry is only one of them. Quite
a few file types include embedded time stamps that can be used
to add significant detail to time lines and may include other valu-
able information. I chose to focus on the Registry because of the
shear wealth of information available, if you know where to look
and you’re willing to do so. To make it easier for me to do this,

x   Preface

in November 2008, I released an open-source tool I called “the
Registry Ripper,” or just RegRipper, and this tool seems to have,
in some senses, taken off. RegRipper isn’t a viewer application,
as much as it is an extraction tool. Once you find something of
interest in the Registry through research or some sort of analy-
sis, you can develop a plug-in (the design behind RegRipper is
based, in part, on a plug-in structure similar to what’s used by the
Nessus vulnerability scanner) to extract (and if necessary, parse)
the information you’re interested in. From that point on, it’s no
longer a matter of keeping lists, repetitively clicking your way
through a Registry viewer, or simply forgetting what you were
looking for . . . RegRipper will run the plug-in and extract the
information for you, if it’s available. This means that one person
can write a plug-in, and a dozen or a hundred other people can
run it and get the same results.
I’ve used RegRipper on just about every examination I’ve

conducted, even before I released it. Once malware artifacts
or persistence mechanisms have been identified, I can write
a plug-in, and from that point on, run the plug-in against the
appropriate Registry file. The same holds true for other artifacts,
which are discussed in detail in Chapters 3 and 4. Most plug-ins
take a second or less to run (there are a few that will take lon-
ger, and I’ve tried to point those out), and that’s more than
worth it to know if I’m dealing with another instance of Zeus
or Conficker, or something else. Others have used RegRipper;
RegRipper has not only been downloaded and run by a num-
ber of analysts, but also it’s been included in a number of open-
source forensic distributions, as described in Chapter 2. Many
have spoken highly of RegRipper. Chris Pogue of Trustwave is
but one of a number of analysts who has included references
to RegRipper in his presentations at computer security and
forensics conferences.
Throughout this book, the focus is on the Registry found on

the Windows NT family of operating systems, from Windows XP
(also including Windows 2000), through Windows 2003, Vista,
Windows 2008, and Windows 7.

Intended Audience
This book is intended for anyone interested in the forensic analy-
sis of Windows systems, including analysts, incident responders,
students, law enforcement officers, and researchers. Even sys-
tem administrators and hobbyists will get something useful from
this book. I’ve tried to point out how the information in this book
can be used, by both forensic analysts and incident responders,

	 Preface   xi

alike. Whether you’re either examining an image acquired from a
system or connecting to remote systems through Matt Shannon’s
magnificent F-Response Enterprise Edition, you can use tools
like RegRipper to look for indicators of malware infections,
intrusions, as well as of misuse.
While reading this book, you’ll notice that there are several

tools, described throughout, that were written in the Perl script-
ing language. Fear not, true believer (see how I worked in that
Stan Lee reference right there?), as this does not mean that you
have to be a Perl programming guru, in order to use or under-
stand the output of these tools. In most cases, Perl is simply the
method I’ve used to solve a problem . . . and in most cases, solv-
ing problems is what it’s all about. Although some programming
capability would be beneficial if you want to develop your own
RegRipper plug-ins, several folks with little to no Perl program-
ming skill have written working plug-ins. Others have rewritten
tools like RegRipper in other languages, because again, it’s not
about the tool you use to solve the problem, it’s about solving the
problem.

Organization of This Book
This book consists of four chapters following this preface. Those
chapters are as follows:

Chapter 1 Registry Analysis
This chapter addresses the topic of analysis overall and what
goes into it. Analysis is much more than simply pressing a button
in a commercial forensic analysis tool and accepting the results
that appear. Analysis may consist of finding one Registry value
among what could be thousands, but more often it will consist of
collecting and correlating a number of keys (including LastWrite
times) and values, and even correlating that information with
other data collected from other sources, such as the file system
and event logs.
All analysis should begin with your goals; what are you look-

ing for, what are you hoping to show, demonstrate, or reveal? For
consultants such as myself, goals are paramount to an engage-
ment, as someone is paying for my efforts, and spending time
pursuing things not consistent with those goals will have a det-
rimental impact on the timely delivery of my final report. What
I’ve found over the years is that customers often want timely,
accurate information that they can act upon and use to make
important business decisions, and the goals of the engagement

xii   Preface

will get me there. In many respects, the same thing applies to law
enforcement examinations; there’s something that the analyst is
trying to show or determine often to support someone else’s case.
Although goals direct the efforts of an analyst, documentation

is a key component of analysis. Not only does our documentation
allow approach analysis in a concise, consistent manner, but also
it allows us to go back to something we did weeks or months after
the fact, and answer the questions that arise.
Another aspect of computer forensic analysis that I think is

very often overlooked is having an understanding of what is “nor-
mal” or “expected” on a system, and knowing that what’s not
there can be as important (or more so) as what is there. There are
many aspects of Windows systems that are “normal” and con-
sistent as a result of how the operating system works and how
the user interacts with the system. The existence of these arti-
facts can tell you as much about the system as their absence. For
example, if a user interacts with the system on a regular basis but
does not have a RecentDocs key (this key is discussed in detail in
Chapter 4 of this book), then this can tell you much more about
what happened on the system than the user having that key pop-
ulated with a number of values (in one case, a tool had been used
to remove potential “evidence” including the key itself).
By discussing these topics, as well as others in this chapter, my

hope is to put the reader in the right mindset for the rest of the
book. Actually, what I’d really hope for is that at some point after
this book is published, someone tells me that this chapter had
an impact on how they approach all examinations, regardless of
whether they involve Windows systems or not. Something like
this would be very validating.

Chapter 2 Tools
In this chapter, we discuss a number of tools that are used in
Registry analysis, from two basic perspectives. One perspective
involves determining Registry keys and values that are affected
by various actions on a system; in short, either monitoring a live
system’s access to the Registry or determining changes made to
the Registry following a specific action, such as running an appli-
cation or installing malware.
The other perspective involves using the information we’ve

discovered during forensic analysis of systems, specifically of
Registry files from acquired systems. In both cases, we discuss
some of the tools that can be used.
One thing you should not expect to find in this chapter is

a great deal of detailed discussion of the use of commercial

	 Preface   xiii

forensic analysis applications. As I was preparing to write this
book, I had submitted my proposal to the publisher, who then
had that proposal reviewed. Of the 11 anonymous reviews of
the proposal that I had received, one of the comments con-
sistent across all of the reviews was that I should include
detailed commentary of the use of commercial forensic anal-
ysis applications. Well, I have to tell you . . . I simply do not
have access to all of those tools. And yes, I did try to get access
to one of them, and was told that no, I could not get even a
temporary license for the use of the tool. Although I do have
access to ProDiscover from Technology Pathways, that is the
only commercial product that I could utilize while writing this
book. The rest of the tools discussed in this chapter are freely
available, and in the case of RegRipper, the tool is also open-
source, allowing the analysts to modify the tool to meet their
needs, rather than adapting their analysis to the confines of
the tool.

Chapter 3 Case Studies: The System
Throughout the process of writing my previous books, something
that I’ve come to understand is that providing a lengthy list of
Registry keys and values is of little overall value to most analysts.
Yes, there may be a number of keys or values in that list that some
analysts hadn’t considered or heard of, but for the most part,
providing just a list doesn’t do much to demonstrate how that
information can be used, particularly during the wide variety of
possible examinations. So rather than providing a box of build-
ing blocks and expecting the analyst to assemble them into dif-
ferent structures, the approach I’ve taken in this chapter (as well
as in Chapter 4) is to attempt to show how various keys and val-
ues have had a significant impact on various examinations, and
how they can be used in conjunction with other data to further
your analysis, and allow you to succinctly achieve your goals. My
hope is that providing the information in this manner is engaging
and educational, and leads the reader, regardless of background
or job duties, to use the described tools, and if necessary, dig a bit
deeper.
That being said, in this chapter, I attempt to answer a lot of

the questions that I encountered while working on engagements,
as well as address some of the questions that I’ve seen others
pose in forums, on list servs, and at conferences. I think that this
chapter contains a lot of really good information (well, of course
I think that, right?), and I hope that everyone who reads it finds
something new.

xiv   Preface

Chapter 4 Case Studies: Tracking User Activity
In many ways, this chapter may be the most significant one
in the book for some analysts. There are a number of examina-
tions that center on activity associated with a user account (that
is “user activity”), particularly when law enforcement encounters
the “Trojan defense,” or during investigations involving corpo-
rate espionage or the theft of intellectual property by a departing
employee. I’ve also found a great deal of valuable data associated
with particular user accounts during examinations involving the
exposure or theft of credit card data.

Information described in this chapter can be used to address
a number of issues. For example, in addition to demonstrating a
user’s interaction with the Windows Explorer shell, time stamps
associated with the data can illustrate when the user account
was logged onto the system. This can assist an analyst in dem-
onstrating the use of a particular user account when auditing on
the system has not been configured to record when users log in
(determining the audit configuration is covered in Chapter 3).

CD Contents
The CD that accompanies this book contains several of the tools
I’ve written (in Perl) and described in this book, although other
tools that are freely available on the Internet are not provided
on the CD. The tools I’ve provided are open-source, so feel free
to examine the code, and if necessary, modify it to meet your
needs.

I’ve also provided executable versions of the tools, “compiled”
with Perl2Exe, so that you do not have to install Perl to run the
tools.

If you do decide to run the Perl versions of the tools (as
opposed to the binary executables), you only need to install Perl
on your system. One of the assumptions I see quite often is that
to run the tools provided on the accompanying CD (as well as
with respect to Perl scripts, in general) is that Perl needs to be
installed on every system, and that simply isn’t the case.

	Ac knowledgments   xv

Acknowledgments
I’d like to begin by thanking God for the many blessings He’s
given me in my life, the first of which has been my family. I count
having the interest, ability, and heart for writing this book, as
well as the others, as one of those blessings. I thank Him daily,
but I find myself thinking that it’s not nearly enough. A man’s
achievements are often not his alone, and I think in my heart
that being able to write a book like this is a gift and a blessing in
so many ways.
I’d like to thank my true love and the light of my life, Terri,

and my stepdaughter, Kylie. Both of these wonderful ladies have
put up with my antics yet again (intently staring off into space,
scribbling in the air, and of course, there are my excellent imita-
tions taken from some of the movies we’ve seen), and I thank you
both as much for your patience as for being there for me when
I turned away from the keyboard. It can’t be easy to have a nerd
like me in your life, but I do thank you both for the opportunity
to “put pen to paper” and get all of this stuff out of my head. Yes,
that was a John Byrne reference.
I’d like to thank Jennifer Kolde, a computer scientist with the

federal law enforcement, yet again. Going through the process of
working on my very first book with you has left an indelible mark
on how I have approached and written books since then. Over
the years we have had a number of opportunities to engage and
exchange thoughts and ideas, and that has really been very ben-
eficial for me.
Maggi Grace Holbrook, a law enforcement officer in Washington

state, deserves a big “thank you,” but not just from me. Maggi Grace
is a dedicated officer with a grueling and often thankless job. With
the people she encounters and the images she has to look at as part
of her job, I don’t know how she does it. But I do know that when
I took some time to help her and answer some questions for her,
she went out of her way to thank me. Exchanging e-mails with her,
since then, have really validated my own avenues of interest and
have led to a lot of my thoughts, and what I’ve included in this book
regarding the “Trojan defense.” God bless you! Maggi Grace.
I also want to thank Chris Pogue and Don Weber. Chris and I

spent about 18 months working together on the IBM ISS team,
and during that time, we had a couple of opportunities to work
together. Working on engagements with Chris had been a great
opportunity for me to really look at and question (or have ques-
tioned) some of my base assumptions; Chris came from a field of
penetration testing and Linux, so sometimes his questions regard-
ing forensic analysis of Windows systems, and in particular, of the

xvi  Ac knowledgments

Windows Registry really made me take a step back and think about
things. I know that this can be frustrating for some, but for me, it
was and has been a good exercise. Chris is currently (as of this
writing) doing good things with TrustWave and has been heav-
ily focused on payment card industry (PCI) forensic assessments.
Engaging with him regarding what he’s seen has given me a view
into a world I’d left. I also worked with Don while on the IBM ISS
team, albeit not for as long. Don played a similar, but different (we
are both former Marines … ‘nuff said!) role, and now he’s off doing
good things for InGuardians.
I miss working with Cory Altheide. Cory and I exchanged

e-mails several years ago and published some research articles
with respect to tracking USB removable storage devices across
Windows systems. At one point, Cory and I had an opportunity
to work together, and while employment at that organization
ultimately didn’t work out for either of us, I’m going to be entirely
selfish and say simply that when we did have an opportunity to
work together, it was a blast!
I want to be sure to thank everyone who’s inspired me by writ-

ing their own RegRipper plug-ins. Michael Hale Ligh comes to
mind as I was reviewing a chapter of an upcoming book, of which
he is a coauthor, and saw several custom plug-ins. Don Weber, a
former IBM ISS teammate and former Marine, wrote some of his
own plug-ins a while ago, as well (not bad for a Python guy). To
the two of you and to the others who’ve done so, I thank you for
what you’ve done in validating my efforts in creating RegRipper.
As far as RegRipper goes, I have to thank Brett Shavers yet again

for his efforts in setting up and maintaining the RegRipper.net
Web site. I thank you for your efforts and support, Brett.

	A bout the Author   xvii

About the Author
Harlan Carvey (CISSP) is a vice president of Advanced Security
Projects with Terremark Worldwide, Inc. Terremark is a leading
global provider of IT infrastructure and “cloud computing”
services, based in Miami, FL. Harlan is a key contributor to the
Engagement Services practice, providing disk forensics analysis,
consulting, and training services to both internal and external
customers. Harlan has provided forensic analysis services for
the hospitality industry, financial institutions, as well as federal
government and law enforcement agencies. Harlan’s primary
areas of interest include research and development of novel
analysis solutions, with a focus on Windows platforms.
Harlan holds a bachelor’s degree in electrical engineering

from the Virginia Military Institute and a master’s degree in the
same discipline from the Naval Postgraduate School. Harlan
resides in Northern Virginia with his family.

This page intentionally left blank

1

1
Registry Analysis

Information in This Chapter
•	 What Is “Registry Analysis”?
•	 What Is the Window Registry?
•	 Registry Structure

Introduction
The Windows Registry is a core component of the Windows oper-
ating systems, and it maintains a considerable amount of con-
figuration information about the system. In addition, the Registry
maintains historical information about user activity; in order to
provide the user with a “better”, more personalized experience,
the Registry maintains details about applications installed and
opened, as well as window positions and sizes. This information is
maintained within the Registry in a manner similar to a log file. By
this, I mean that there’s a great deal of time-stamped information
maintained in the Registry, including, but not limited to:
•	 When a user opened an application or accessed a Control

Panel applet
•	 The last time the system connected to a particular wireless

access point
•	 When a graphic image viewing application was used to access

a particular file
All of this information can be extremely valuable to a forensic

analyst, particularly when attempting to establish a timeline of
activity on a system. A wide range of cases would benefit greatly
from information derived or extracted from the Registry if the
analyst was aware of the information and how to best exploit or
make use of it.

Information in the Registry can have a much greater effect on
an examination than I think most analysts really realize. There are
many Registry values that can have a significant impact on how

Windows Registry Forensics. DOI: 10.1016/B978-1-59749-580-6.00001-2
© 2011 Elsevier Inc. All rights reserved.

2   Chapter 1  REGISTRY ANALYSIS

the system behaves; for example, there is a Registry value that, on
Windows XP and 2003 systems, tells the operating system to stop
updating file’s last access time so that whenever a file is opened
(albeit nothing changed) for viewing or searching, the time stamp
is not updated accordingly. And oh, yeah … this is enabled by
default on Vista, as well as Windows 2008 and Windows 7 systems.
A few other examples of Registry values that can impact an exam-
ination include (but are not limited to) the following:
•	 Alter or disable File System Tunneling [1]
•	 Modify System Crash Dump, Prefetcher, and System Restore
Point behavior

•	 Clear the page file when the system is shut down
•	 Enable or disable Event log auditing
•	 Enable or disable the Windows firewall

File System Tunneling
“File system tunneling” refers to an operating system’s ability to “hold
onto” file system metadata for a short period of time. How this can affect
an analyst’s examination is that if a file is deleted and then another
file created in relatively short order that reuses the directory entry for
the deleted file, the second file will actually take on the metadata (time
stamps) for the previous file. It turns out that this also works for file
renaming operations, as well, according to Microsoft. In short, when
a file is removed from a directory, either by deleting or by renaming
the file, the metadata for that file is temporarily cached. If, within a
predefined amount of time (15 s by default), another file is added to that
directory with the same name, the cached information is reused. This
capability is meant for compatibility with earlier DOS programs that
require the functionality and would affect an examination by providing
false information about the creation date of a file in an analyst’s timeline.
The file system tunneling functionality can be controlled or simply
disabled through specific Registry values [1].

There are a number of other values that can have a significant
impact (possibly detrimental) on what an analyst sees during
disk and file system analysis. Some of these values do not actually
exist within the Registry by default and therefore must be added,
usually in accordance with a Microsoft Knowledge Base (KB)
article. At the very least, understanding these values and how
they affect the overall system can add context to what the analyst
observes in other areas of their examination.

Registry Values and System Behavior
The Windows Registry contains a number of values that significantly
impact system behavior. For example, an analyst may receive an
image for analysis and determine that the Prefetch directory contains

Chapter 1  REGISTRY ANALYSIS   3

no Prefetch (*.pf) files. Registry values of interest, in such a case, would
include those that identify the operating system and version; by default,
Windows XP, Vista, and Windows 7 will perform application prefetching
(and generate *.pf files). However, Windows 2003 does not perform
application prefetching (although it can be configured to do so) by
default. The Prefetcher itself can also be disabled, per MS KB article
307498 [2]. This same value can be used to enable or disable application
prefetching on Windows XP, Vista, and Windows 7 systems.

The purposes of this book are to draw back the veil of mys-
tery that has been laid over the Registry, and to illustrate just how
valuable a forensic resource, the Registry, can really be during
malware, intrusion, or data breach examinations, to name just
a few. The Windows Registry contains a great deal of extremely
valuable information that can provide significant context to a
wide range of investigations.

What Is “Registry Analysis”?
When examining an acquired image, an analyst will many times
include “Registry analysis” as one of their analysis steps. You’ll
see this mentioned during initial calls, listed in reports, men-
tioned during final close-out of a project or analysis engagement,
and discussed online. Most times, this will amount to opening a
Registry hive file in a viewer application and looking at the con-
tents of a couple of the more well-known Registry keys or locat-
ing a couple of values. Sometimes, the keys examined are pulled
from the analyst’s previous experience, and in other cases, they
may be part of an analysis plan or standard operating procedure
for the organization. This list may expand to a significant number
of Registry keys, and be included in a checklist or spreadsheet.
However, does this really constitute “Registry analysis”?

I mean … really? When someone says “disk analysis,” it usually
constitutes much more than just looking at the disk itself, or just
accessing the disk via the appropriate write-blocking hardware.
Usually, the word analysis refers to (or infers) examining some-
thing from various angles and degrees, in an attempt to determine
the context of the object of our attention in relation to other infor-
mation or data from the same or other sources. The same holds
true for the Windows Registry. There’s much more to “Registry
analysis” than simply looking at a couple of keys or values.
How does this approach differ from more “traditional” Registry

analysis? The approach to Registry analysis has traditionally been
one of looking at a specific key or at several specific values, and this
approach has long been reflected in commercial tools. Commercial
forensic analysis applications tend or attempt to represent the

4   Chapter 1  REGISTRY ANALYSIS

Registry in much the same manner as one would expect to see it
on a live system (with obvious limitations, of course, all of which
we will discuss later in this chapter and throughout the book),
providing a layer of abstraction to the analyst through that repre-
sentation. Looking at a specific key or value may answer a specific
question for the analyst, but how often is that all we’re really look-
ing for? Registry keys and/or values may be pertinent in and of
themselves, but more and more, they are simply part of the story,
rather than being the entire story themselves. Don’t misunder-
stand; there will be times when one Registry key or value is all you
need. However, what I’m trying to convey here is that there is much
more information and context available, so don’t stop at just that
key or value because you may think that’s all you need, or that’s all
that you have available to you.
In short, “Registry analysis” can run across a spectrum of

activities, from extracting specific key and/or value information
to searching within the Registry and correlating data retrieved
from different areas of the Registry. All of these activities can con-
stitute the scope of “analysis,” although both analysis and the
examination itself may often benefit from something more. For
example, what do certain Registry keys or values mean within
the context of others? As we mentioned earlier in this chapter, a
specific Registry value [3] controls whether or not the operating
system updates a file’s last access times; so, how does this affect
an analyst attempting to determine when a particular image file
was viewed? If an analyst understands what information is main-
tained in the Registry, he/she will then be able to determine not
only which user on the system viewed the image but also which
application and when. Or, consider a flag value within a Registry
value that determines whether or not a password is required for
a user account? Is that flag value sufficient, or should the analyst
check to see if the user account actually has a password (this is
covered in detail in Chapter 3, “Case Studies: The System”)?
Also, there may be far more information within the Windows

Registry than meets the eye, particularly when the Registry is
presented to the analyst via the abstraction layer of a viewing
application. Much like files within a file system, Registry keys and
values that are deleted do not simply disappear; as we’ll see, the
Registry files can contain significant information within the unal-
located space of the files themselves.
Throughout the rest of this book, we’re not going to be look-

ing so much at this Registry key or that Registry value; rather, in
most (albeit not all) instances, we’ll be interested in examining
the Registry as part of a postmortem analysis and as such, we’ll
use Registry analysis to help us determine not only the context

Chapter 1  REGISTRY ANALYSIS   5

of what we’re looking at but also how that object of our attention
plays into the overall context of our analysis. That context may be
determined based on the analysis of other Registry keys and val-
ues, or it may be dependent upon other objects, such as file sys-
tem metadata, Windows Event log records, entries in other logs,
and so on.

Analysis Concepts
Before we talk about Registry analysis specifically, there are a few
analysis concepts that we need to discuss that are pertinent to
examinations as a whole. Keeping these concepts in mind can be
extremely beneficial when performing digital analysis in general.

Locard’s Exchange Principle
Dr. Edmund Locard was a French scientist, who formulated the
basic forensic principle that every contact leaves a trace. This
means that in the physical world, when two objects come into
contact, some material is transferred from one to the other and
vice versa. We can see this demonstrated all around us, every
day … let’s say you get a little too close to a concrete stanchion
while trying to parallel park your car. As the car scrapes along
the stanchion, paint from the car body is left on the stanchion
and concrete, and paint from the stanchion becomes embedded
in the scrapes on the car.
Interestingly enough, the same holds true in the digital world.

When malware infects a system, there is usually some means
by which it arrives on the system, such as a browser “drive-by”
infection via a network share, USB thumb drive, or an e-mail
attachment. When an intruder accesses a system, there is some
artifact such as a network connection or activity on the target
system, and the target system will contain some information
about the system from which the intruder originated. Some of
this information may be extremely volatile, meaning that it only
remains visible to the operating system (and hence, an analyst)
for a short period of time. However, remnants of that artifact may
persist for a considerable amount of time.

Everything Leaves a Trace
Almost any interaction with a Windows system, particularly through the
Windows Explorer graphical interface, will leave a trace. These indications
are not always in the Registry, and they may not persist for very long, but
there will be something, somewhere. It’s simply a matter of knowing what
to look for and where, and having the right tools to gain access to, and
understanding of how to correctly interpret the information.

6   Chapter 1  REGISTRY ANALYSIS

The quote, “absence of evidence is not evidence of absence,” is
attributed to the astrophysicist Dr. Carl Sagan and can be applied to
digital forensics, as well. Essentially, if an analyst understands the
nature of a user’s interaction with a Windows system, then the lack or
absence of an artifact where one is expected to be is itself an artifact.
During a recent examination, I was trying to determine a user’s access
to files on the system and could not find the RecentDocs (this key will
be discussed in greater detail in Chapter 4, “Case Studies: Tracking User
Activity”) key within the user’s NTUSER.dat hive file; RegRipper did
not find it, and I could not locate the key manually. As it turns out, the
user had run the “Window Washer” application, which reportedly clears
the list of recently accessed documents. The time associated with the
user launching the application (derived from the user’s UserAssist key)
corresponded to the LastWrite time on the RecentDocs parent key.
While examining a system that was part of a larger incident, our team

had determined that there was a malware file on the system (a dynamic
linked library, or DLL) but could not determine the method used to
load and launch the malware. A timeline consisting of file system and
Event Log events clearly showed the user logging in, the process being
launched, the DLL file being accessed, and then the known file system
artifacts being created. Our first thought was that there was some
autostart location or trigger within the user’s NTUSER.dat hive file, but
we could not find anything. It turned out that the DLL in question was
loaded as a result of some Windows shell extensions not having explicit
paths listed in the Registry, and the operating system following its
designated search order to locate a DLL by that name. In both instances,
the absence or lack of an expected artifact was itself an artifact and
spurred additional in-depth analysis.

So how does this apply to Registry analysis? When a user, even
an intruder who has gained access to the system, interacts with
the system and particularly with the Windows Explorer user inter-
face (a.k.a., shell), some rather persistent artifacts are created.
If a malicious user logs into the system and plugs in a USB thumb
drive, there is an exchange of information that occurs, and some
of those artifacts persist in the Registry. If the malicious user then
launches applications (such as, U3, Moka5, MojoPac, and so on),
there will be additional artifacts created. When a user connects
his/her system to a wireless access point (WAP), information
about the WAP persists on the system, again, in the Registry.
Analysts need to keep Locard’s Exchange Principle in mind

during an examination because it can not only tell them that
there are artifacts but also point them to where those artifacts
may be located.

Least Frequency of Occurrence
I first heard the term “least frequency of occurrence” mentioned
in the context of digital forensics at the SANS Forensic Summit

Chapter 1  REGISTRY ANALYSIS   7

during the summer of 2009. Peter Silberman (an analyst with the
consulting firm Mandiant) used the term to describe malware
infections on systems. His point was that in the old days, mal-
ware (and in particular worms) would spread rapidly, infecting
and reinfecting systems. In short, a system would be so heavily
infected that it would become completely unusable by anyone,
let alone the attacker. The result was that not only the infected
systems were unusable to the attacker, but the failing systems
also provided a clear indication to the “victim” organization that
they were infected. In order to address this, malware authors
began using a unique “mutex,” a software programming object
that allows for mutual exclusion, within their malware in order to
prevent the system from becoming reinfected. Once the system
was infected, the mutex would be present in memory; on reinfec-
tion, the malware would check for the mutex and, if found, not
proceed with the infection.
The offshoot of this is that the mutex is very often random

(although, sometimes not so random) and always unique. This
became an excellent indicator of a malware infection; in fact, Kris
Harms (also an analyst with Mandiant) discussed (during a pre-
sentation) using the Microsoft SysInternals tool handle.exe to list
all the mutexes available in memory for all of the running pro-
cesses on the system and then sorting the output by the unique
mutexes. Kris demonstrated that a quick look at those mutexes
that only occurred once very often resulted in rapid and accu-
rate detection of malware, even if the mutex name itself had been
changed. Demonstrating Kris’s use of handle.exe is outside the
scope of this book, but it does serve as an example of how the
concept of least frequency of occurrence (LFO) can be used, not
only for malware but also for intrusions, and therefore can also
be very important to our analysis.
The point of LFO is that during the lifetime of a system, mal-

ware infections and intrusions are often what occurs least
frequently on that system. Operating system and application
updates are extremely “noisy,” generating a great deal of file sys-
tem (file creations, modifications, and deletions) and Registry
(keys being created, values updated, and so on) activity, and
occurring fairly frequently. Windows XP, by default, will create a
System Restore Point every 24 hours (as well as under other con-
ditions) and will also launch its Disk Defragmenter utility every
three calendar days to perform a limited defrag. Windows XP also
generates or updates Prefetch files whenever an application is
launched. Beginning with Windows Vista, the operating systems
began maintaining Volume Shadow Copies (as opposed to the
traditional Windows XP System Restore Points) in order to pro-
vide a recovery mechanism. When a user installs software from

8   Chapter 1  REGISTRY ANALYSIS

Apple (such as QuickTime, iTunes, and so on), a Scheduled Task
is created on the system to look for updates to those applications
once a week, and the user can choose to install those updates
by creating and modifying files within the file system. Microsoft
releases operating system and application updates monthly, and
sometimes does so “out of band,” or out of the regular update
release schedule. What this means is that there is a lot of normal
file system and Registry activity that occurs on a system, but in
contrast, when malware infects a system, a few files (and maybe
Registry keys or values) are created, and there may also be some
network connections as the malware communicates off the sys-
tem. When an intruder accesses a system via Remote Desktop
using an easily-guessed password, there may be several Event log
records generated (we will discuss how to determine the audit
configuration on a system in detail in Chapter 3, “Case Studies:
The System”) and some Registry keys may be created or modified,
and depending upon the actions they take, there may be some
files created, modified, or deleted on that system. Again, with the
exception of turning the compromised system into a repository
for pirated movies or music files, a malware infection or intrusion
will very often constitute the least frequent activity on the system.
In fact, many intrusions go undetected for long periods of time, as
the intruder will use very simple techniques to minimize as much
as possible the artifacts left on a system. This can also be true for
other types of issues, such as viewing illegal images. A file (or a
few files) are added to the system, the files are viewed (as we’ll see
in Chapter 4, “Case Studies: Tracking User Activity,” some Registry
keys will be updated), and then the files may be shared or deleted.
Overall, adding, viewing, and deleting these files really do not
constitute a considerable amount of activity, particularly when
compared with operating system and application updates.
What this often means to our analysis is that during intru-

sions or malware infections, we wouldn’t usually be looking for
large numbers of files being added to the system, or for massive
numbers of Registry keys or values being created, or regular or
significant spikes in activity of any kind. Most often, spikes in file
system and Registry activity will indicate an operating system or
application software update (or much to the chagrin of the ana-
lyst, a system administrator running antivirus application scans),
not a malware infection or system intrusion.

Goals
Before starting any analysis, every analyst should carefully con-
sider and document their goals. What are you looking for?
What questions are you trying to answer? What do you hope to

Chapter 1  REGISTRY ANALYSIS   9

ultimately achieve through your analysis? We do this because this
helps us understand what it is we should be doing, what data we
should extract, where we should go to look for clues, and what
data can be correlated to address the issue. Too often, analysts
get caught up in the “find all bad stuff” mind-set (or allow cus-
tomers to hem them into it) and in doing so spend hours upon
hours “doing analysis,” yet never actually answer the questions
before them. Believe me, I understand how you’ll be looking for
one thing but find something else that, while interesting, may
not have anything to do with your immediate analysis. Pursuing
these kinds of things is called having “shiny object syndrome”;
like a fish or a kitten, you’re easily distracted by shiny objects. An
example of this is locating all of the malware and spyware on a
system, when the customer just wanted to know if a user on the
system had accessed or copied a file (as in a fraud or exposure of
intellectual property issue).
Your goals may vary depending upon your employer and the

type of work you generally do. If you’re a consultant, your goals
may vary from case to case; during one examination, you may
have to determine if a system was infected with malware and,
if so, the capabilities of that malware (that is, what data did it
extract, where was the data sent, was the malware specifically
targeted at the organization, and so on). In another examina-
tion, you may have to determine if there was sensitive informa-
tion (that is, personally identifiable information, credit card
data, classified data, and so forth) stored on the system, whereas
another examination may pertain to violations of corporate
acceptable use policies. If you’re a law enforcement officer, you
may be faced with a possible issue of fraud, or you may need
to demonstrate that a computer owner had knowledge of and
viewed contraband images.
Regardless of the type of examination, your goals are where

everything starts and ends. For consultants, who are not answer-
ing a customer’s questions can lead to serious issues, such
as spending far more time on your “analysis” than your con-
tract allows, or attempting to bill a customer when you haven’t
answered their questions. Our analysis goals give us direction
and focus, and allow us to provide those answers in a timely and
efficient manner.

Documentation
Perhaps the most important aspect of any analysis, after the
goals, is documentation. Forensic analysts and incident respond-
ers should document all aspects of what they do, from the
acquisition of hard drives and the transfer and management

10   Chapter 1  REGISTRY ANALYSIS

of acquired images to their analysis plan and actual case notes.
Many organizations have their own acquisition methodology and
chain of custody documentation, usually in some sort of form or
checklist. This is a good start, but documenting case work should
not stop there.
What can sometimes be missed is documentation of the over-

all analysis process. Before conducting analysis, do you sit down
and ensure that you understand the goals of the analysis, or the
questions that you’re trying to answer? Whether you’re a con-
sultant working for a customer or an examiner performing work
in support of law enforcement, there’s usually some reason why
you’re sitting there with a hard drive or an acquired image. What
is that reason? Most likely, it’s that someone has questions that
need to be answered. So start your analysis plan by documenting
the goals that you’re trying to achieve. From there, you can begin
framing out your steps going forward and noting where you need
to look and those tasks that you need to achieve. For example, if
the goal is to determine the existence of specific e-mails, you’ll
likely want to check for .pst or .ost files, or may want to check the
Registry and determine which e-mail client was used and deter-
mine if Web-based e-mail was used, and so on.
The analysis plan can lead the analyst directly into docu-

menting the analysis process itself. So why would we do this?
What happens if at some point during the analysis process, you
get sick or become injured? What happens if the analysis needs
to be handed off to someone else? Another very real possibility
is what happens if 6 months or a year after you complete your
analysis, you have to answer questions about it? I know several
analysts to whom this has happened recently. For myself, I’ve
worked with customers who’ve come back with questions 6 or
more months after accepting the final report and paying their
bill … had I not had clear, concise documentation, I would have
had trouble answering their questions in an intelligible manner.

Note
Many times when beginning an examination involving the Web browser on a system, I’ll see analysts start off by saying,
“I’d check the contents of the user’s TypedURLs key.” That key, located in the NTUSER.dat file within the User Profile,
contains a list of the URLs typed into the Internet Explorer address bar. But is that really a good place to start? What
if there are no entries? What does that tell you? Perhaps a better place to start would be to determine which Web
browser the user was using, or at least which Web browsers were installed in the system before targeting browser-
specific artifacts.

Chapter 1  REGISTRY ANALYSIS   11

We’ve all been busy to the point where we can’t remember what
we had for breakfast, let alone the specifics of an examination
from 6 months ago. Your case notes and documentation can be
extremely important at that point, and it’s best not to have to
figure that out after the fact.
Another important aspect of documenting your analy-

sis is that it allows you to go back and look at what you did and
improve the process. Documentation is the basis for improve-
ment, and you can’t improve a process if you don’t have one. Your
documentation provides that process. If you didn’t document
what you did, it didn’t happen. By listing out the steps you fol-
lowed in your analysis, you can see which ones were perhaps less
fruitful, which ones can be skipped or improved upon the next
time, and which ones provided greater value. This also allows
for other, less-experienced analysts to learn from what you have
done, what worked, and what didn’t so that more analysts are
able to achieve a similar, greater level of analysis.

Challenges of Registry Analysis
Although often fruitful, Registry analysis isn’t always easy, and
there are two primary challenges when it comes to Registry anal-
ysis. Depending on your particular experiences, there may be
other challenges, but these are the two big ones as I see them.
The first challenge to Registry analysis is that the Registry

itself isn’t all that well understood by responders and analysts.
To be honest, I’m not even sure that there’s really anyone who
completely understands the Windows Registry. The Registry is
a critical, core component of the Windows operating systems,
and it records a considerable amount of information about
the system configuration and usage, as well as user activity,
particularly when the user is interacting with the system through
the Windows Explorer shell. With just the operating system itself,
I don’t think that there’s really anyone who completely under-
stands why some keys and values have the paths and contain
the structures that they do, or what activities lead to the keys or
values being created or modified, let alone the structure of vari-
ous binary value data. This lack of understanding by the vendor
obviates any thorough knowledge and understanding by ana-
lysts and leaves the analyst to perform considerable testing to
determine and illustrate how various artifacts originated on the
system.
Although considerable work has been performed and docu-

mented in this area, the awareness that this work is possibly
incomplete persists. As new versions of the operating system
are developed, locations and formats for storing data in the

12   Chapter 1  REGISTRY ANALYSIS

Registry change, as well, and some keys or values may be added,
moved, modified, or simply removed. Very little is known and
documented about what actions cause various keys to be modi-
fied; while some testing has been done for a very small number
of keys, new questions are being posed all the time that would,
quite honestly, require access to the source code to the operating
system in order to completely answer. Being closed source, the
way Windows is, having complete access to the source code isn’t
likely to happen anytime soon.
Several years ago, Cory Altheide (whom I used to work with at

IBM and is now a responder for Google) and I conducted some
research into tracking the use of USB devices across Windows
systems. After we were done, we published our findings, confi-
dent that we’d figured out a way to determine when a USB device
was last connected to a system. More recently, Rob Lee (of con-
sulting firm Mandiant and SANS fame) conducted additional
testing and determined that what Cory and I had determined was
really the first time that the device had been connected during
the current (or most recent) boot session, meaning that if the sys-
tem was running for several days and the USB device connected
and disconnected several times, the best we could hope to show
(with just the data we’d found) was when the device had first
been connected during that boot session. Additional informa-
tion is available in Windows Vista and Windows 7, but there sim-
ply is no comprehensive listing of actions by a user or within the
operating system that would affect particular Registry keys.

Malware and the Windows Registry
Most of the time, when looking for indications of malware remaining
persistent on a system, I’ll go right to the Registry. Not only is this a
popular location for malware to use to maintain persistence, but very
often new persistence locations in the Registry are also discovered by
analyzing a new bit of malware that’s been found. The reason is that
many malware authors will become aware of these locations and how
to use them well before anyone else, including antivirus vendors and
malware analysts.
Analyzing the Registry for new bits of malware can often be a game of

catch-up, as some new means of persistence may have been discovered
by the bad guys and not yet commonly known by responders and
incident analysts.

To make matters worse, not only do malware authors make
extensive use of the Registry so that their creations will remain
persistent on systems across reboots and logins, but some have
even gone so far as to place entire Windows executables files into
binary value data!

Chapter 1  REGISTRY ANALYSIS   13

The other challenge of Registry analysis is the fact that
while the binary structure of the Registry remains the same
across versions of Windows (that is, the core binary structure
of the Registry is very much the same between Windows 2000
and Windows 7, inclusive), important keys and values change
between versions, often very drastically. In many cases, this
applies to the base operating system as well as to new and even
existing applications. This can make it very difficult for an ana-
lyst who figures out and documents some specific Registry keys
and values, based on a particular version of an application and
operating system, only to find those settings null and void when
an updated version of the application or the operating system is
released.
One example of these changes is how user search terms are

maintained within the Registry. With Windows XP, you could
find various search terms under a key named “ACMru.” Subkeys
beneath this key pertained to particular form fields that a user
could submit terms to when performing searches. With Windows
Vista, search terms were recorded in a file, but not in the Registry.
With Windows 7, search terms are again stored in the Registry,
but under an entirely different path, beneath a key named
“WordWheelQuery.” These keys are discussed in greater detail in
Chapter 4, “Case Studies: Tracking User Activity.”
It is not the goal of this chapter or even this book to provide a

comprehensive listing of all similar changes that occur between
various versions of the Windows operating system; rather, it is
enough to understand that these changes can and do occur, and
it is incumbent upon analysts to keep up-to-date on analysis
techniques and procedures, particularly, as they pertain to the
Windows Registry.

Tip
Something that is very important to keep in mind when considering whether to engage in live response activities
(as opposed to acquiring an image of the hard drive and conducting postmortem analysis) is that while your actions do
have an effect on the system (processes loaded into memory, files created on the system as a result of your actions, and
so on), so does your inaction. Think about it. A live system is running, with things going on all the time. Even though a
system just sits there, processes are running and actions are occurring on the system. With Windows XP, simply wait
24 h and a System Restore Point will (by default) be automatically created. Wait 3 days and the system will conduct a
limited defragmentation. Also consider the fact that if someone is exfiltrating data from your systems, then while you
wait and do nothing, they continue to take more data. So the question of live response really comes down to (a) do I do
nothing or (b) do I take the correct actions to protect my organization as best I can under the circumstances?

14   Chapter 1  REGISTRY ANALYSIS

What Is the Windows Registry?
So far we’ve talked about Registry analysis, but what is the
Windows Registry? According to Microsoft Knowledge Base (KB)
article 256986 [4], the Windows Registry is a “central hierarchal
database” intended to store information that is necessary
to configure the system for one or more users, applications,
and hardware devices. In short, the Windows Registry is a
binary data structure meant to replace the configuration and
initialization (.ini) files used by previous versions of Windows
(okay, Windows 3.1). For a normal Windows user and for most
administrators, this is pretty transparent and means very little to
them. Most users and administrators do not interact directly with
the Registry; instead, they interact with it through some sort of
graphical user interface (GUI), such as the Registry Editor that is
distributed with most Windows installations. Figure 1.1 illustrates
the Registry Editor on Windows XP.
As you can see in Figure 1.1, the Registry Editor provides

a user or administrator with an easy means to navigate the
Registry by providing a layer of abstraction. There may be
times when even an administrator doesn’t go as far as using the
Registry Editor, as most interaction with the Registry may be
through application installation (that is, launching the installa-
tion process, which then adds and modifies Registry entries) or
removal.

Figure 1.1  Registry Editor on Windows XP

Chapter 1  REGISTRY ANALYSIS   15

Many of the instructions and Knowledge Base (KB) articles
available from Microsoft that deal with interacting with the
Registry do so by having the reader interact with a GUI compo-
nent of the Windows Explorer shell or through another applica-
tion. For example, a user wouldn’t directly access the Registry to
delete keys and values created when an application is installed;
instead, they would likely use the Add/Remove Programs Control
Panel applet. In those instances where Microsoft does identify
specific Registry keys, there is always a stern warning against
directly modifying the Registry, as to do so might leave the
system inoperable.

Purpose of the Windows Registry
Microsoft tells us that the Registry maintains configuration infor-
mation about the system, but what does this really mean? It’s one
thing to say that the Registry replaces the text-based .ini files of
old and is a database that maintains configuration information
about the system and applications that run on it, but what does
that really mean to the incident responder and forensic ana-
lyst? We’re not so much interested in what this means to a user
or to an administrator; instead, what we’d like to know is, what
does that mean to those of us who would need to delve into this
resource? Well, what it means is that there’s a lot of information in
the Registry that tells the operating system and applications what
to do, where to put things, and how to react to certain stimulus.
There are a lot of little nuances that can have a significant effect
on incident response and forensic analysis that are all managed
through the Registry. For example, one Registry value tells the
operating system to clear the page file when the system is shut
down, and another setting tells the operating system whether or
not to enable the use of a hibernation file, whereas yet another

Note
Graphical tools are primarily intended to make a task easier for the user and to protect the users from themselves. The
GUI prevents the user from seeing what happens “under the hood.” However, that’s exactly where malware authors and
attackers go … under the hood. The best source of information regarding autostart locations in the Registry is the anti-
virus vendors; as they receive new malware samples to analyze, they begin to see what methods and autostart locations
(and persistence mechanisms) these folks are using. Neither Microsoft nor application vendors provide such a breadth of
information. Further, relying on antivirus vendors to let us know what they’re seeing is reactive, not proactive.

16   Chapter 1  REGISTRY ANALYSIS

value disables the updating of last access times within the file
system. When you think about it, all of these values can have a
significant impact on a wide range of incident response activities
and digital forensic analysis.
Devices that have been connected to the system are tracked

through the Registry. Information about devices is maintained
in the Registry so that the devices are recognized and presen
ted as they were previously when they’re reconnected to the
system; as such, this information can be extremely valuable to
a forensic analyst when attempting to track the use of an iPod,
digital camera, or thumb drive on a system or across several
systems.
The Registry also tracks a great deal of information about a

user’s activities. This can be very beneficial to a forensic ana-
lyst. Let’s say you sit down to play a game of Solitaire on your
Windows system, and the first time you run the application,
you get the default settings, with respect to how many cards are
dealt and how the game is timed and scored. You change most of
these settings to something else and then resize and reposition
the game window. When you’re done playing, you close the win-
dow and shut down the system. The next day, you come back and
launch the game again, and all of your settings are still there, hav-
ing persisted across a log out and reboot. This is due to the fact
that the settings are recorded in the Registry so that the next time
you launch the application or game, your most recent and pre-
ferred settings are read, and the application window is presented
in the location, size, and shape that you left it.
The Registry also tracks a number of other user actions, such

as clicking through the Program menu to start an application,
as well as keeping track of recently accessed files that are associ-
ated with various applications, such as MS Word, Excel, Windows
Media Player, and so on. The user will generally see these files on
the Recent Documents portion of the Program menu, or as part
of a drop-down menu specific to the application, as illustrated in
Figure 1.2.

Warning
Not all applications create a presence in the Registry. For example, some peer-to-peer (P2P) sharing applications are
cross-platform and Java-based, and as such, don’t rely on the Windows Registry to store information. Instead, they use
configuration files in order to make cross-platform coding easier.

Chapter 1  REGISTRY ANALYSIS   17

Much of the information tracked in the Registry can be asso-
ciated with a time value of some sort, and as such, the Registry
becomes something of a log file. As will be addressed later in
this chapter, all Registry keys maintain a property called their
“LastWrite time.” Whenever a Registry key is modified … cre-
ated, values or subkeys are created or deleted, or a value is
modified … the key’s LastWrite time is updated to reflect that
change. This value is analogous to a file’s last modification time
(although, as of yet, I have been unable to locate an accessible
application programming interface, or “API,” that allows for the
arbitrary modification of LastWrite times as it is with file MAC
times). However, this is not the only place that time stamps are
maintained in the Registry. Many values contain time and date
information and, often, in different formats. In this way, the
Registry can be considered in many respects to be a log file.

Figure 1.2  Windows Media Player File Menu Item Showing Recently Accessed Files

18   Chapter 1  REGISTRY ANALYSIS

Location of the Windows Registry on Disk
From a forensic analysis perspective, an analyst does not gen-
erally interact with the Registry through the Registry Editor. An
analyst will most likely interact with Registry hive files directly,
through a commercial forensic analysis application, or as a result
of extracting them from a file system or from an acquired image.
There are a number of such tools available, several of which will
be discussed in Chapter 2, “Tools.” However, it is important for
the analyst to know where these files exist on disk so that they can
be retrieved and analyzed. The main, core system Registry hive
files (specifically, SAM, Security, Software, and System) can be
found in the Windows\system32\config directory, as illustrated in
Figure 1.3.

Tip
While analyzing a system to determine if a user had looked at images or videos (as opposed to a virus or worm putting
those files on the system), I ran across the use of the Window Washer application, which is intended to “clean up”
behind a user. In this case, the application maintained the last date and times that it had been run in its own Registry
values, which I was able to correlate to other, similar data. There were two separate values, one for date and one for
time, maintained as strings.

Figure 1.3  Registry Hive Files in the Windows\System32\Config Directory

Chapter 1  REGISTRY ANALYSIS   19

The hive files themselves, illustrated in Figure 1.3, are referred
to as “hive” files, as the files contain the binary database structures
or “hives.” These are the hive files that maintain configuration
information about the system, such as operating system version
and settings, local user account information, installed software
and components, and so on.
On Windows Vista and above systems, there is another hive

file in the system32\config directory named “Components.”
Although there are a number of keys and values listed in this
hive file, as of this writing, I have yet to find anything signifi-
cant from a forensics or incident response standpoint; how-
ever, this may change in the near future. Also beginning with
Windows Vista, the boot environment for Windows systems
was completely re-engineered. The result is that in the C:\Boot
directory, you will find a file called “BCD” (the “boot configu-
ration data” file) which contains information maintained in
the same structure as Registry hive files. A detailed discussion
of the BCD architecture is beyond the scope of this book, and
the file itself is mentioned here (and in Chapter 3) only because
it shares the Windows Registry structure along with the other
Registry files.
Information specific to individual users is maintained in

the NTUSER.dat hive file that is located in the User Profile. For
Windows 2000, XP, and 2003, the User Profiles are found in the
Documents and Settings directory at the root of the system
drive, whereas for Vista and later versions, the User Profiles are
found in the “Users” directory. There is also another user hive
that is merged with the NTUSER.dat hive file when a user logs
in, allowing for a unified presentation of the information from
both hives. This is the USRCLASS.dat hive, located in the User’s
Profile, in the Local Settings\Application Data\Microsoft\
Windows folder. The information maintained in this hive file can
vary between operating system versions. With Windows 7, some
entries normally found in the user’s NTUSER.dat hive file have
been moved to the USRCLASS.dat hive; this will be addressed
later in this book.

Note
With Windows NT and 2000, there was actually a limit to the maximum size of Registry file, per MS KB 124594 [5]. This
restriction was removed as of Windows XP and 2003 [6].

20   Chapter 1  REGISTRY ANALYSIS

Registry Redirection and Virtualization
With more modern versions of Windows, Microsoft has implemented
redirection and virtualization with respect to the Registry. Registry
redirection [7] essentially means that on 64-bit versions of Windows,
some Registry calls by 32-bit applications are redirected to another por-
tion of the Software hive. What this means to an analyst is that some
32-bit application information (that is, those keys that are not identi-
fied as being shared between 64- and 32-bit applications) will appear
in the HKEY_LOCAL_MACHINE\Software\Wow6432Node key path,
rather than in the HKEY_LOCAL_MACHINE\Software key path. Similar
redirection does not occur within the Software key in the user’s hive.
Microsoft KB article 896459 [8] provides a list of shared keys. Note that
Registry reflection for synchronization has been disabled as of Windows
2008 and Windows 7.
Registry virtualization is a bit different and impacts an examiner’s

analysis differently. Microsoft describes Registry virtualization [9] as,
beginning with Windows Vista, “an application compatibility technology
that enables registry write operations that have global impact to be
redirected to per-user locations.” What this means is that Registry
modifications (writes, anything to create keys or values) that have a
global impact on the system will be written instead to a “virtual store”
(HKEY_USERS\<SID>_Classes\VirtualStore\Machine\Software\key
path), which translates to the USRCLASS.dat hive file mentioned above.

Portions of the Windows Registry visible through the Registry
Editor are “volatile,” meaning that they are populated when the
system is booted or when a user logs in and do not exist on disk
when the system is shut down. This is extremely important for
first responders and forensic analysts to understand, as there
may be valuable data that does not exist within an acquired
image and must be collected while the system is still running.
One example of volatile data is the HKEY_CURRENT_USER

hive. When viewed through the Registry Editor, you can clearly
see this hive, and after a little exploration, you’ll find that the
information in this portion of the Registry pertains specifi-
cally to the logged-on user. However, when you shut the system
down and analyze an acquired image, you won’t find an HKEY_
CURRENT_USER hive or any file by that name. That’s because
this hive is populated by using the hive of the user who’s logged
into the system.
For the currently logged-in user, the HKEY_CURRENT_USER\

SessionInformation key contains a value named Program Count
that keeps track of the number of programs you have running on
your desktop. This is the count you see when you lock your work-
station. However, this value doesn’t exist in the user’s NTUSER.
dat file when the system is shut down.

Chapter 1  REGISTRY ANALYSIS   21

Another example of volatile Registry keys and values is the
HKEY_LOCAL_MACHINE\Hardware key and its subkeys. This
key stores information regarding the devices connected to the
system (CPU, keyboard, mouse, hard drive, and so on) and their
assigned resources, and is populated when the system boots up.
If you open the Registry Editor and navigate to the HKEY_

LOCAL_MACHINE\System hive, you’ll see a key named “Current
ControlSet,” and most likely, two others whose names begin with
“ControlSet00” and end in a number. The CurrentControlSet
doesn’t exist when the system is shut down and is populated at
boot time from one of the available ControlSets.
Yet another example of a volatile portion of the Registry is the

HKEY_CLASSES_ROOT key. When the system is booted, this key
is populated with the contents of the HKEY_LOCAL_MACHINE\
Software\Classes key, and when a user logs in, the HKEY_
CURRENT_USER\Software\Classes key contents are added and,
according to Microsoft, take precedence of the entries from
HKEY_LOCAL_MACHINE entries [11].
What’s important to keep in mind is that there are portions of

the Windows Registry that only exist in memory. Thanks to folks
like Aaron Walters and Brendan Dolan-Gavitt (both of Volatility
memory analysis fame), this information can be accessed,
retrieved, and analyzed; the necessary tools for collecting this
data will be discussed later in this book.

Nomenclature
When working in the incident response and digital foren-
sics field, as with many other fields, it is necessary to have and
observe specificity of terminology. Basically, this is just a fancy
way of saying that we all need to agree on what different things
are called and then call them that. When I took one of my first
vendor-specific training courses for a commercial forensic
analysis application, the instructor spent the first hour or more

Note
When performing postmortem analysis of the Registry, it is a straightforward process to determine which ControlSet
had been mounted as the CurrentControlSet on the live system. Simply open the System hive in a viewer and locate that
Select key. Beneath that key, you will find a value named “Current,” whose data is a number. If the data is “0 × 0001,”
the ControlSet mounted as the CurrentControlSet is ControlSet001 [10].

22   Chapter 1  REGISTRY ANALYSIS

explaining what a “CPU,” “hard drive” or “disk,” a “computer
system” really were. As someone with an electrical engineer-
ing degree, if you ask me to go into a room with a computer and
retrieve a “CPU,” I’m going to open the computer, go to the moth-
erboard and extract that little black square thing with all of the
pins coming out of it, so I really hope that you aren’t expecting
the entire computer.
In short, it’s important that when talking about parts of the

Registry, we all must have and use a consistent understand-
ing of what it is we’re referring to so that we can communicate
clearly and avoid (as much as possible) confusion and misun-
derstanding. Figure 1.4 illustrates the various components of the
Registry, specifically keys, subkeys, values, and data. We’ll go into
more depth regarding the details of the binary structure of these
components.
From the Registry Editor view illustrated in Figure 1.4, “keys”

and “subkeys” are the folders displayed in the left-hand pane of
the editor. This is an apt metaphor, in that keys can contain or
point to other keys (that is, subkeys) as well as values. Keys also
contain very valuable information from a forensic perspective
(their LastWrite time) within their binary structure. Values, in
the right-hand pane in Figure 1.4, are much simpler and contain
data of a specific type, be it a string value, multiple string values,
binary, or DWORD, which is just a 32-bit binary value.

Tip
Understanding the version of Windows that you’re analyzing can have a significant impact on your examination.
For example, Windows XP creates and maintains System Restore Points by default, which means that depending on
the system being used you may have access to a great deal of historical data. Portions of the Registry are maintained
in System Restore Points (that is, not all portions of the hives are stored, as it wouldn’t do well to reset a user’s pass-
word to an older one when restoring a system to a previous state) and can be easily accessed during analysis. Also,
keep in mind that System Restore Points are created for a number of reasons, such as driver installations, as well as
simply being created every 24 hours. More recent versions of Windows (Vista, Windows 7) use Volume Shadow Copies
to maintain backups of files, and accessing those Volume Shadow Copies can give you a view into the Registry in an
earlier state. Understanding System Restore Points and Volume Shadow Copies can provide a view into Registry data
that isn’t accessible through any other means.

Finally, Windows 7 includes the ability to run XP Mode, a specific Windows XP installation intended to provide
backward compatibility to run older applications. Users can install applications that have trouble running in Windows 7
into the XP Mode Virtual PC installation and access them via the Windows 7 desktop. This also means that on any
Windows 7 system with XP Mode installed, there is a second source of potentially valuable Registry hive files.

Chapter 1  REGISTRY ANALYSIS   23

More importantly, we now have a frame of reference for dis-
cussing the Registry and Registry analysis throughout the rest of
this book and a common understanding of what a “key” is and
what a “value” is, and how they relate to each other. Many times
in such discussions, consistent terminology may be reversed or
simply not used, and confusion ensues.

Registry Structure
Now that we’ve seen where the Registry “lives” within a live sys-
tem, and subsequently within an acquired image, it’s important
to take that one step further and understand the structure of the
Registry itself, as we may find vitally important information in
places other than within Registry hive files. For example, we may
find Registry data within unallocated space from an acquired
image, or within the hive file itself (yes, Registry hive files do con-
tain “unallocated space”!). We may also find Registry data and
indeed entire hives within a memory dump from a live, running
system, or within the Windows page file.

Tip
Brendan Dolan-Gavitt has done considerable work with respect to locating and accessing Registry information within
Windows memory dumps and has contributed plugins to the Volatility project for accessing this data.

Figure 1.4  Registry Nomenclature

24   Chapter 1  REGISTRY ANALYSIS

Regardless of where Registry data (keys, values) are found, it is
important to understand the binary structure of the Registry so
that we can understand what Registry viewing applications are
showing us. Whether we’re viewing a Registry hive file via a com-
mercial forensic analysis application or a hive file viewer, under-
standing the structure of the Registry helps us understand what
we’re seeing, as well as what we aren’t seeing. Remember that the
viewer provides a layer of abstraction, representing to the analyst
what the data should look like; as such, some data may not be
apparent or easily read and understood because of shortcomings
in the viewer, the nature of the data, and so on.

Registry Hives and Searches
When performing PCI data breach investigations, one of the things
I needed to do was search across the entire hard drive for what could
be credit card data, including both the numbers themselves, as well
as track data. In one particular instance, my search revealed a number
of hits within Registry hive files, specifically an NTUSER.dat hive in
one User Profile and within the Software hive file. Viewing the data
around the search hits within the hive files, I did not see anything that
resembled a Registry key or value; likewise, opening the hive files in a
viewer and searching for the search hits provided no indications that the
hits were key or value names, or in Registry data. As it turned out, the
search hits were actually located in file slack, something that we were
able to determine through an understanding of the binary structure of
the Registry.

Thankfully, the binary structure of the Registry itself has
remained fairly consistent across the various versions of the
Windows operating system, from Windows NT all the way to
Windows 7. This means that a viewer application that under-
stands the structure of the Registry will, for the most part, work
equally well on hive files from all versions. What’s changed, how-
ever, are the names and locations of various keys and values …
where data is stored and what format it is in will differ between
versions of the Windows operating system. Windows XP, for
example, maintains information about wireless access points
(WAPs) that have been connected to (connections that were
managed by Windows, rather than a third-party utility) in a
binary data structure within values beneath a specific Registry
key. Vista and Windows 7 use an entirely different format for
similar information and add some additional information … all
of which is located beneath a different Registry key. A great place
to start in developing an understanding of the hive file structure
is Mark Russinovich’s “Inside the Registry” article in Windows NT
Magazine (available online at http://technet.microsoft.com/

Chapter 1  REGISTRY ANALYSIS   25

en-us/library/cc750583.aspx). This article provides an excellent
overview of the structure of the Registry, identifying the various
cell types (key, value, subkey list, value list, and so on), bins, and
the cell map relationships between them.
When I initially began looking into the structure of the

Registry from a programming perspective, I relied heavily on
Peter Nordahl’s work with his offline NT Password and Registry
Editor [12] in order to understand the binary structures that
comprise a Registry hive file. Peter’s utility allows you to boot a
Windows system (originally from a disk, there’s now a version
that runs on a boot CD) and, for one, modify any password.
When you reboot the system, you can then log into the system
using the user account you select and the new password you
created. I used an early version of this utility to access Windows
XP systems turned in by departing users in a corporate environ-
ment, and I have used the boot CD version more recently when
booting an acquired image through VMWare. Although the utility
itself has been extremely useful, what I was looking for was the
source code, which Peter provides. Within the source distribution
archive is a file called “ntreg.h,” which contains constant values
and definitions for various structures within the Registry. Within
the source archive, you will also find a file named “WinReg.txt,”
which has a bit of a summary of what’s in the ntreg.h file, includ-
ing descriptions of some of the structures without as much detail
as the header file. Using this information, along with a hex edi-
tor, I was able to start writing my own binary Registry hive file
parser in Perl, allowing me access the information stored within
the files and obtain as much detail as I wanted. As I began devel-
oping this hive file parser, I ran across the Parse::Win32Registry
Perl module (available online at http://cpan.uwinnipeg.ca/dist/
Parse-Win32Registry) written by James Macfarlane. This module
provides an easy-to-use object-oriented (OO) interface for access-
ing various structures within the hive files. I should point out that
this is an entirely different module from the Win32::TieRegistry
module that ships with ActiveState’s Perl distribution, in that the
Win32::TieRegistry module allows a Perl programmer to interact
with a live Registry (on a running system, as may be the case dur-
ing incident response), not directly with the hive files, as is the
case with James’ module.
In the spring of 2008, Jolanta Thomassen asked me if I would

act as her sponsor for her graduate thesis, which involved under-
standing the structure of the Windows Registry with a specific
focus on locating deleted keys and values within the hive file
itself. This topic had intrigued me for quite some time (as a ref-
erence for her, I provided a link to a UseNet post I’d made in

26   Chapter 1  REGISTRY ANALYSIS

2001 asking about unallocated space in hive files), and Jolanta
did a fantastic job not only in understanding what deleted keys
and values “look like” but also how to recover them and pres-
ent them in an easy to understandable format. The result of her
work is a utility called regslack, the Windows portable execut-
able (PE) version of which I use quite regularly, and I have to say,
effectively.
In February 2009, Peter Norris posted his master’s thesis

regarding The Internal Structure of the Windows Registry online
at http://amnesia.gtisc.gatech.edu/~moyix/suzibandit.ltd.uk/
MSc/. Peter’s work goes into considerable detail regarding the
binary structure of the Windows Registry and also referenced
Jolanta’s work. It is beyond the scope and focus of this book
to review Peter’s work in detail, and such a review is left as an
exercise to the reader.
Mark Russinovich’s “Inside the Registry” article, mentioned

earlier in this chapter, describes a number of Registry cell or
“record” types. Of those, we are primarily interested in and will
be focusing on the key and value cells/records, as these provide
the vast majority of information of interest to forensic analysts.
Other cell types (subkey list, value list, and so on), while signifi-
cant, are beyond the scope of this book, and a detailed examina-
tion of those cell types is left as an exercise to the reader. These
cell types are simply pointers to lists of subkeys or values and do
not contain key or value structures themselves.
Registry hive files are made up of 4-KB sections or “bins.”

These bins are meant to make allocation of new space (as the
hive file grows), as well as the maintenance of the hive file itself,
easier. The first four bytes of a normal hive file starts with “regf”
(or 0366676572 in hexadecimal). From there, as you traverse
through the hive file on a binary level, as with a hex editor, every
4096 bytes you should see “hbin” (036E696268, in hex). Per Peter
Norris’ thesis work, various cells within the hive files do not cross
hbin sections; that is, a key cell will not be split between two
adjacent hbin sections, overlapping the border between them. As
such, the hbin sections can be considered self-contained.
The first hbin marker is very important, as this is the base

location for offset values listed with the key and value cells
throughout the rest of the hive file. What this means is that
when you’re reading values within a key cell structure (which
we’ll be looking at shortly) and you read an offset that value is
the offset from the first hbin marker. For example, as we’ll see
shortly, each key cell contains a value for the offset to its par-
ent key, which essentially points back to that key. That offset, in
bytes, is measured from the beginning of the first hbin marker,

Chapter 1  REGISTRY ANALYSIS   27

which itself is 4096 bytes from the beginning of the hive file. On
the surface of this, you may be wondering how this informa-
tion is useful. Several open-source tools that assist the analyst
with locating and extracting (that is, “carving”) data from unal-
located space within an image allow the analyst to designate
a header and footer for locating data or to designate a header
or marker (also known as a magic number) and then read in a
set number of bytes. These data carving tools can be used to
search unallocated space or similar unstructured data such as
the Windows page file or a hibernation file for Registry “hbin”
sections.

Registry Key Cells
The Registry “hbin” sections are made up of several types of
cells, but for our purposes, we’re going to focus on the key and
value cells. Key cells (or “keys”) are very important to forensic
analysts as they contain time-based information within their
structure, in the form of their LastWrite time. The LastWrite
time is a 64-bit FILETIME structure, marking the number
of 100-nanosecond intervals since midnight of January 1,
1601 [13]. A key cell (without the name) is 80-bytes long and
starts with a 4-byte (in Microsoft parlance, a “DWORD”) value
indicating its size, followed by the node identifier, node type,
the offset to the key’s parent, the number of subkeys, the off-
set to the subkey list, the number of values, the offset to the
value list, the offset to the security identifier, and the length
of the key name (begins immediately after the key struc-
ture). Note that this is not a comprehensive list of the values
within the key cell structure but rather an overview of the val-
ues that are of great interest. Figure 1.5 illustrates the binary

Tip
As with other types of files, allocation of new space for hive files, as the Registry grows, can pose something interesting
challenges for a forensic analyst. When a new hbin section is required, that 4-KB section is, in many cases, allocated
from previously used space within the file system, space that at one time may have contained valid data. During one
examination in particular, I ran a search for credit card numbers and received several hits “in” Registry hive files. Closer
examination of the data indicated that the discovered credit card numbers were not part of the “live” Registry (not con-
tained in key or value names, nor in value data), and the most likely explanation was that the numbers had resided in
sectors that had previously comprised another file (possibly a database) which had been deleted.

28   Chapter 1  REGISTRY ANALYSIS

structure of a Registry key (viewed in a hex editor) with the
node identifier (ID) and LastWrite time values of the structure
highlighted.
As illustrated in Figure 1.5, the node ID is “6E 6B” (036B6E in

little endian format), or “nk,” and is followed by the node type of
032C, which indicates a root node (0320 indicates a “normal”
key node). Immediately following the node type is the LastWrite
time, which is a 64-bit FILETIME object.
Table 1.1 lists the key cell structure details, illustrating the

elements of that structure that are of primary interest to forensic
analysts.

Figure 1.5  Registry Key Structure with Node ID and LastWrite Time

Offset (bytes) Size (bytes) Description

 0 4 Size
 4 2 Node ID (“nk”, or 0x6B6E)
 6 2 Node Type (0x2C or 0x20)
 8 8 LastWrite time
20 4 Offset to this key’s parent
24 4 Number of subkeys
32 4 Offset to the list of subkey records
36 4 Number of values
44 4 Offset to the value list
48 4 Offset to security identifier record
76 2 Length of the key name

Table 1.1  Registry Key Cell Structure Details

Chapter 1  REGISTRY ANALYSIS   29

Table 1.1 should not be considered all-inclusive, as it details
those structure elements that are most important to forensic
analysts. Again, the size of the structure detailed in Table 1.1 is
80 bytes, and the first four bytes of the structure contain the size
of the key cell, which includes the key name and any necessary
padding. Therefore, the total size of a Registry key is the 80-byte
header, name, and padding; for the key illustrated in Figure 1.5,
the total size is 96 bytes.
The size value (the first four bytes or “DWORD”) is an impor-

tant aspect of the key structure of which to take notice. When
read as an unsigned integer, the size is “4294967200,” and we
know that a single key would not usually be expected to be on
the order of 4 GB in size. However, when read as a signed inte-
ger value, those four bytes equal “–96.” Again, the key “header”
itself is 80 bytes, and the actual name of the key begins imme-
diately after the key structure. The name of the key illustrated in
Figure 1.5, “$$$PROTO.HIV,” is 12 bytes and there are an addi-
tional four bytes of padding, rounding out 16 bytes. That makes
the total size of the key itself 96 bytes. This is important, as
Jolanta (and others) had determined that for normal, allocated
Registry keys, the size is a negative value when read as a signed
integer value. However, when a key is “deleted,” the size value is
made positive. If the key in Figure 1.5 was deleted, the size would
be changed to “60 00 00 00,” or 0360. This, along with some other
checks, is how deleted keys can be located within unallocated
space within the hive file.

Registry Value Cells
The other type of cell that we want to take a close look at is the
value cell. Remember, Registry keys can contain subkeys and
values; actually, as we’ve seen, a key doesn’t actually contain this
information, as it instead has offsets to pointers to subkey and
value lists. Value cells, on the other hand, are much simpler, as

Note
Time-based information is maintained in the Registry (and on Windows systems, in general) in a number of formats.
There are values whose data consists of (in part or entirely) a 32-bit UNIX epoch time format, whereas the LastWrite
times of keys, as well as data of some values, consist of 64-bit FILETIME objects. Still other time-based data is main-
tained as 128-bit SYSTEMTIME objects [14], and others are simply maintained as strings (for example, the Skype appli-
cation has a value named “LastUpdatedDate” in the user’s NTUSER.dat file with string data of “01/10/2009”).

30   Chapter 1  REGISTRY ANALYSIS

they don’t contain pointers to any other cells. They are impor-
tant as they do contain value names and point to the data that,
in many cases, we’re interested in knowing and understanding.
Figure 1.6 illustrates the binary structure of a value cell, with the
value node identifier and value type highlighted.
Table 1.2 provides the relevant value cell structure details. As

with the key cell, the first four bytes of a value cell (as illustrated
in Figure 1.6) contain the size of the cell.
Notice that although value cells contain some specific infor-

mation, something that they do not contain is a FILETIME object,
nor any other reference to a time stamp of any kind. Again, as with
the key cell, not all of the value cell structure elements are listed,
and Table 1.2 should not be viewed as all-inclusive. For example,
immediately after the “value-type” element is a 2-byte element
called flags, and as of this writing, I have neither been able to
locate an available description of this element nor of its use.
Registry values can point to data of a variety of types.

Table 1.3 lists the available Registry value types, along with their
names and descriptions. This information is also available from
Microsoft [15].

Offset (bytes) Size (bytes) Description

  0 4 Size (as a negative number)
  4 2 Node ID (“vk”, or 0 × 6B76)
  6 2 Value name length
  8 4 Data length
12 4 Offset to data
16 4 Value type

Table 1.2  Registry Value Cell Structure Details

Figure 1.6  Registry Value Structure with Node ID and Value Type

Chapter 1  REGISTRY ANALYSIS   31

Additional descriptive information about the various Registry
value types can be found in Microsoft Knowledge Base (KB) arti-
cle 256986 [4]. These types are important because there’s consid-
erable information available that may appear in easily readable
text when presented in a GUI, but actually exists within the
Registry in a binary format. For example, when Windows XP is
used to manage wireless network connections on a laptop, the
list of preferred networks can be viewed in the Wireless Networks
tab of the Wireless Network Connections Properties page, as illus-
trated in Figure 1.7.

Table 1.3  Registry Value Types

Type Name Description

  0 REG_NONE No value type
  1 REG_SZ Unicode null-terminated string; can be Unicode or ASCII
  2 REG_EXPAND_SZ Unicode null-terminated string with environment

variables/references
  3 REG_BINARY Binary data (no set length or structure)
  4 REG_DWORD 32-bit number
  5 REG_DWORD_BIG_ENDIAN 32-bit number
  6 REG_LINK Unicode symbolic link
  7 REG_MULTI_SZ Multiple Unicode strings, each ‘\00’ terminated
  8 REG_RESOURCE_LIST Resource list (resource map)
  9 REG_FULL_RESOURCE_DESCRIPTOR Resource list (hardware description)
10 REG_RESOURCE_REQUIREMENTS _LIST A series of nested arrays that store information about

device drivers
11 REG_QWORD 64-bit number

Figure 1.7  Windows XP
Wireless Network Connection
Preferred Networks

32   Chapter 1  REGISTRY ANALYSIS

The list of wireless access point names and their preferred set-
tings (automatic, manual), illustrated in Figure 1.7 (along with a
number of other settings) are contained in binary data within
specific Registry values discussed in Chapter 3, “Case Studies:
The System,” of this book. Other information may be stored in
Unicode format, as opposed to ASCII text, and still other infor-
mation (specifically, time stamps) will be stored in a binary
format that must be extracted and translated before it is easily
understood.

Summary
In this chapter, we’ve taken a look at what the Windows Registry
is, on a variety of levels. By now, you should have a basic under-
standing of not only what the Registry is and its purpose but
also where the Registry “lives” on disk and where to look for
Registry files within an acquired image. This is extremely impor-
tant from a forensic analysis perspective, as it allows the analyst
to understand issues that may develop through the use of com-
mercial forensic analysis applications. Also, we’ve addressed
more detailed information, going so far as to outline the binary
structure of key and value cells. This information allows the ana-
lyst to search for and recognize these structures, not only within
Registry hive files but also within other data sources, such as the
Windows page file, memory dumps, and hibernation files, as well
as unallocated space on disk.

Frequently Asked Questions
Q:  What is the Registry?
 A:  �Microsoft describes the Registry as a “hierarchal database” used to
store, maintain, and manage configuration and user activity data.
The Registry is a core aspect of the Windows operating system,
and significant modifications to specific portions of the Registry
can render the system unbootable. However, there is a significant
amount of data, much of it associated with time stamps that can be
extremely valuable to incident responders and forensic analysts. In
many respects, the Windows Registry can also be considered to be
a log file, of sorts, in that much of the information in a hive file can
be associated with a time stamp, as well as some event that impacts
the data or the time stamp.

Q:  Where should I look for Registry files?
 A:  �The primary location for the core Windows Registry hive files is in
the Windows\system32\config directory. Registry hives specific to

Chapter 1  REGISTRY ANALYSIS   33

users will be found in the User Profile: “C:\Documents and Set-
tings” for Windows 2000, XP, and 2003 and “C:\Users” for Windows
Vista and later versions. Due to back and recovery technologies
used by the various versions of the Windows operating systems, you
can also find Registry hive files within XP System Restore Points, as
well as previous versions of hive files in Volume Shadow Copies on
Windows Vista and later systems.

Q:  �What are the primary differences between the Registry hive files on
the different versions of Windows?

 A:  �From a binary perspective, there are no significant differences
between hive files from Windows 2000 and XP systems, all the way
up to Windows 7 systems. However, with each version of Windows,
there are some changes to what information can be found in the
Registry, where that information can be found (that is, the key
path), and in what format (that is, string, binary, and so on). For
example, on Windows XP, if a user performed a search by click-
ing Start | Search | For Files and Folders, information about the
search would appear in a Registry key called ACMru. With Windows
Vista, search information was no longer maintained in the Regis-
try. However, with Windows 7, information about a user’s searches
is maintained in a Registry key named WordWheelQuery. There’s
nothing really unusual about this; although it is outside the scope
of this book to describe all of the various changes between versions
of Windows, others do exist. With Windows Vista, User Profiles
were moved to the “C:\Users” directory, and the Task Scheduler
logged to an EVTX file, rather than a flat text file (Schedlgu.txt)
as with Windows XP and 2003. Again, listing all of the differences
between the various versions of Windows isn’t something I want
to do in this book; rather, I will point out where there are signifi-
cant differences that will impact incident response and forensic
analysis activities.

References
	 [1]	 Windows NT contains file system tunneling capabilities. Microsoft Support.

N.p., n.d. http://support.microsoft.com/kb/172190 (accessed 28.07.10).
	 [2]	 How to disable the Prefetcher component in Windows XP. Microsoft Support.

http://support.microsoft.com/kb/307498 (accessed 29.03.07).
	 [3]	 Support for Windows Server 2003 SP1 on Windows Storage Server 2003-

based server appliances. Microsoft Support. http://support.microsoft.com/
kb/894372 (accessed 31.03.07).

	 [4]	 Windows registry information for advanced users. Microsoft Support.
http://support.microsoft.com/kb/256986 (accessed 04.02.08).

	 [5]	 Understanding and configuring registry size limit (RSL). Microsoft Support.
http://support.microsoft.com/kb/124594 (accessed 20.02.07).

	 [6]	 Registry size limit functionality has been removed from Windows Server 2003
and from Windows XP. Microsoft Support. http://support.microsoft.com/
kb/292726 (accessed 28.12.07).

34   Chapter 1  REGISTRY ANALYSIS

	 [7]	 Registry redirector. Microsoft Developer Network. http://msdn.microsoft
.com/en-us/library/aa384232(VA.85).aspx.

	 [8]	 Registry changes in x64-based versions of Windows Server 2003 and in
Windows XP Professional x64 edition. Microsoft Support. http://support
.microsoft.com/kb/869459 (accessed 21.04.08).

	 [9]	 Registry virtualization. Microsoft Developers Network. http://msdn
.microsoft.com/en-us/library/aa965884(VS.85).aspx.

	[10]	 What are ControlSets? What is CurrentControlSet?. Microsoft Support.
http://support.microsoft.com/kb/100010 (accessed 01.11.06).

	[11]	 File types. Microsoft Developers Network. http://msdn.microsoft.com/
en-us/library/cc144148(VS.85).aspx.

	[12]	 Offline NT password & registry editor. http://pogostick.net/~pnh/ntpasswd.
	[13]	 Info: working with the FILETIME structure. Microsoft Support. http://

support.microsoft.com/kb/188768 (accessed 23.01.07).
	[14]	 SystemTime structure. Microsoft Developer Network. http://msdn

.microsoft.com/en-us/library/ms724950%28VA.85%29.aspx.
	[15]	 Registry value types. Microsoft Developer Network. http://msdn.microsoft

.com/en-us/library/ms724884.aspx.

35Windows Registry Forensics. DOI: 10.1016/B978-1-59749-580-6.00002-4
© 2011 Elsevier Inc. All rights reserved.

2
Tools

Information in This Chapter
•	 Live Analysis
•	 Forensic Analysis

Introduction
Analysts faced with extracting and analyzing data from the
Windows Registry may be required to do so in a number of dif-
ferent scenarios. During troubleshooting or incident response
scenarios, administrators may want to query multiple systems for
Registry data, or an analyst may want to examine Registry hives
extracted from an acquired image for indications of an intrusion
or violations of acceptable use policies. Regardless of the data to
be extracted and reviewed, an analyst is going to use some sort
of tool to collect that data and possibly even analyze it. In this
chapter, we’ll address some of the possible scenarios that an ana-
lyst may encounter and present some tools that may be used in
those, and other, situations.

In this chapter, we will be focusing on the use of open source
and freely available tools. There are a couple of reasons for this,
the first being that such tools are generally accessible to a much
wider audience than commercial forensic analysis applications.
Second, I feel that it’s important for analysts to understand the
mechanics of what they’re trying to achieve and to understand
what’s going on “under the hood” before using the commercial
forensic analysis applications. Third, there are a number of tools
available that provide functionality, either in and of themselves or
through process, that commercial forensic analysis applications
do not provide. Finally, I simply cannot afford to purchase all of
the forensic analysis applications, and while writing this book,
I only had access to one of the commercial forensic analysis
applications available on the market.

36   Chapter 2  TOOLS

The list of tools presented and discussed in this chapter
should not be considered a comprehensive list of such tools.
These are simply the tools I have used or encountered (mostly
used) myself, and do not indicate a preference either way. Are
there other, better tools? Possibly! However, the point I’m try-
ing to make isn’t which is the best tool but to demonstrate what
we’re trying to accomplish so that you, the reader, will be able to
make a decision as to which will be the best tool for you. There
may be tools available for Linux or Mac platforms, but I will be
sticking to the Windows platform; the tools discussed all run
on Windows systems. Some of the tools discussed later in this
chapter will, in fact, work on platforms other than Windows,
which does not restrict an analyst to a particular analysis
platform.

Live Analysis
In Chapter 1, “Registry Analysis,” we looked at some informa-
tion about the Windows Registry structure, going into a deep,
detailed view of the binary structure of Registry key and value
cells. However, we also mentioned that in many cases, users
and administrators do not interact with the Registry at such a
deep level. In fact, the majority of interaction by most users and
administrators occurs either through some abstraction mecha-
nisms, be it a viewer, an installation routine, or through some
kind of graphical wizard. In many cases, a user or an administra-
tor may not even realize on running an application or installation
routine that she’s extracted data from or modified entries in the
Windows Registry.
However, there will be times when administrators and

responders need to go beyond a simple viewer application and
collect information from the Registry of a live system. For exam-
ple, administrators may need to proactively scan the infrastruc-
ture for specific settings, in order to track application versions for
licensing, or to determine the location of some applications that
are installed.

Scanning for Applications
While working as a security engineer at a financial services company
several years ago, I was tasked with creating a report of all installed IM
applications on all systems within the infrastructure, as well as their
versions. I did this by first enumerating all active systems within the
domain and then connecting to each one to query the Registry for the
pertinent information.

Chapter 2  TOOLS   37

Responders may need to scan systems across the enterprise
once they’ve determined some key artifacts of an incident, and
shutting down and acquiring an image from each system sim-
ply isn’t cost effective (or possible). Fortunately, there are tools
and mechanisms available, which allow administrators and
responders alike to collect and correlate just about any Registry
information they may need.

Querying a Live Registry
There are a number of ways to interact with and extract data
from a Registry on a live Windows system. In Chapter 1, we men-
tioned the Registry Editor (regedit.exe), a native GUI application
resident on Windows systems.
However, using regedit.exe can be cumbersome. For example,

you can only view the Registry on the system you’re currently
logged into and accessing. In the case in which multiple systems
need to be queried quickly, regedit.exe is not particularly a viable,
or scalable, solution. Also, regedit.exe does not allow the analyst
to see some data, such as Registry key LastWrite times (also dis-
cussed in Chapter 1, “Registry Analysis”). So, while you can look
and search for keys, and traverse through the Registry in the GUI,
you’re still somewhat limited in what you can do, what informa-
tion you can retrieve, and how quickly you can go about collecting
information from multiple systems across the infrastructure. This
can be particularly detrimental during a number of incidents, such
as potentially widespread malware infections, as well as intrusions.

Reg.exe
Reg.exe is a native, command line-based Registry console tool
that ships with Windows, starting with Windows XP. This native
utility has the ability to manipulate the Registry, not only read-
ing information from it but also adding, deleting, and modifying
Registry keys and values.
The easiest way to get started using reg.exe is to open a com-

mand prompt and simply type reg /?. You’ll see that there are a
number of operations available; to get more information about a
particular operation, type reg <operation> /?. For example, typ-
ing reg query /? provides information on the options that are
available via the query operation.
In order to query information from the Run key (that is, get

a listing of the subkeys and values pointed to by the key), you
would type the command:

Reg query HKLM\Software\Microsoft\Windows\CurrentVersion\Run

38   Chapter 2  TOOLS

In order to query for a specific value, you would add /v to the
command, and if you wanted to query all subkeys and values,
you would add the /s switch to the command. In order to run
the above command on a remote system, you would type the
following command, adding the reference to the remote system:

Reg query \\Machine\HKLM\Software\Microsoft\Windows\
CurrentVersion\Run

In this case, “Machine” would be the name or IP address of
the remote system; this, of course, assumes that the user account
being used to run the command has the necessary privileges to
access the remote system and that network connectivity between
the administrator’s system and remote system permits access to
the appropriate ports (that is, firewalls are not blocking connec-
tivity, and so on.). In many incident response scenarios, this is
perhaps the biggest impediment to rapid remote response.
The benefit of using a console tool such as reg.exe is that it

can very easily be included in batch files, allowing for a range of
remote processing options. For example, an administrator can
run a batch file to query the contents of the Run key across a
wide range of systems within the infrastructure, using redirection
operators at the command line (that is, “.” or “..”) to direct
the output of the command to files rather than simply displaying
the output at the console. Those files can then be searched from
specific entries, looking for installed applications, or perhaps
malware.
However, a limitation of reg.exe is that other key informa-

tion, such as a key’s LastWrite time, is not available. Using reg.exe
on a remote system is also limited, as only the keys and values
under the HKEY_LOCAL_MACHINE and HKEY_USER hives are
available.

Warning
In the spring of 2010, the Microsoft Malware Protection Center (MMPC) had a reference to a worm named Win32/Verst,
which had reportedly been found on the microSD cards installed in new Samsung Wave phones, in a specific geographic
region of Europe. This worm reportedly did not affect the phone, but instead infected the Windows PC that it was con-
nected to and created an entry in the Run key in the Software hive as its persistence mechanism (which will be discussed
in more detail in Chapter 3,“Case Studies: The System”). This illustrates that malware can come from anywhere, even
some of the most unlikely infection vectors, and that persistence mechanisms, which have been used and well known to
responders and analysts for years, are still in active use.

Chapter 2  TOOLS   39

Autoruns
Autoruns.exe [1] is a tool written by Mark Russinovich of Microsoft,
formerly SysInternals. Autoruns is a great GUI tool that allows you
to see a lot of the various locations on a system, where various pro-
grams can be run automatically, with little to no user interaction.
Figure 2.1 illustrates the GUI for Autoruns, version 10.02, run on a
Windows XP system.
Figure 2.2 illustrates the Autoruns GUI when the tool is run on

Windows 7. The most notable addition to GUI is the available tab
named SideBar Gadgets.
Figures 2.1 and 2.2 shows that there are a number of locations,

many of which (albeit not all) are found in the Registry, that
allow programs to start automatically, often with no more inter-
action from the user than booting the system or logging into
the system. Autoruns is a very useful tool for troubleshooting

Figure 2.1  Autoruns, Version 10.02, GUI on Windows XP

40   Chapter 2  TOOLS

systems, as well as for locating malware and suspicious appli-
cations, during incident response. In fact, Autoruns comes with
a command line companion tool called autorunsc.exe (not the
addition of the “c” in the filename), both of which are intended
to be run on live systems. Incident responders can include this
tool in batch files used for collecting information from systems
and gain a considerable amount of insight into what may be hap-
pening on the system. This tool can also be deployed remotely
by responders using the Psexec.exe (remote command execution
tool) also available from Microsoft. As of version 10, Autoruns
includes the capability to analyze off-line Registry files; the
administrator simply selects the appropriate locations via the
“Offline System” dialog box illustrated in Figure 2.3.
To examine off-line files using autorunsc.exe, use the “-z”

switch. To see other available options for use with autorunsc.exe,
simply type autorunsc /? at the command prompt.
Although both of these tools are extremely thorough in the

locations from which they extract data, there are a couple of

Figure 2.2  Autoruns, Version 10.02, GUI on Windows 7

Chapter 2  TOOLS   41

things to consider when deploying these tools. First, none of the
tools collects Registry key LastWrite times. Registry key LastWrite
times can be extremely valuable when conducting incident
analysis or building a timeline of activity from affected systems.
Second, all the entries are simply presented, and there’s very little
explanation as to what many of the tabs refer to or how the infor-
mation they provide can be used, particularly by less experienced
analysts. In short, this can provide an analyst with considerable
amounts of data which she has no idea how to use. Finally, these
tools all employ an end-user license agreement (EULA) that must
be agreed by the user before the tool will run for the first time
on the system. When the tool is run and the EULA is accepted, a
Registry key is created for the tool, as illustrated in Figure 2.4.

Figure 2.4  Excerpt from RegEdit Illustrating Microsoft SysInternals Tool Keys

Figure 2.3  Autoruns “Offline System” Dialog Box

42   Chapter 2  TOOLS

In order to run autorunsc.exe successfully on a system for the
first time during incident response, a command line similar to
the following, accepting the EULA, should be used:

autorunsc -v -a /accepteula

The “/accepteula” switch will automatically accept the EULA;
if this is not used, a dialog box will appear and will wait for user
interaction to accept the EULA before proceeding.

Autorunsc.exe and Digital Signatures
The “-v” switch used with autorunsc.exe tells the tool to verify digital
signatures of files. There are a couple of things that analysts need to
keep in mind when using this switch and viewing the output of the tool.
First, in order to verify a file’s digital signature, it has to be opened and
accessed, modifying the last accessed time of the file. Second, around
June 2010, I began to notice an increase in the number of articles in
the media where malware files were found to use legitimate, albeit
stolen digital signatures. I would not suggest that this is when it started;
more accurately, this is when I first started to notice more articles in
the media. Specifically, the malware known as Stuxnet was reported to
use legitimate digital signatures from RealTek Semiconductor Corp.and
JMicron.

The point of mentioning these three items is not, say, that
you shouldn’t use autorunsc.exe; rather, the point is to educate
the user of what to expect when using the tool. As I mentioned,
these two tools are very thorough and collect a great deal of valu-
able data. However, using these tools on a system will leave the
artifacts described above.

Windows Scripting
Windows Management Infrastructure (WMI), Windows Script
Host (WSH), and Windows PowerShell are all native Windows
scripting interfaces that can be used to query information from
the Registry. Providing an introduction to any of these facilities is
beyond the scope of this book but suffices to say that a great deal
of useful information can be found at the Windows Script Center
[2]. Essentially, I’m mentioning these scripting interfaces here for
completeness, although I have never used them myself.

Perl
Anyone who knows me and has read any of my previous books
is probably surprised that it took me this long to mention Perl!
Although not native to Windows systems, Perl is freely available

Chapter 2  TOOLS   43

from ActiveState.com and, particularly when it comes to Windows
systems, is an extremely powerful and versatile tool.
For accessing the Registry on live systems, Perl has the

Win32::TieRegistry module available, which installs by default as
part of the ActiveState Perl distribution (called ActivePerl). This
module is specific to and will only run on Windows systems, as
it relies on the underlying Windows application programming
interface (API) to function properly.
The following Perl code uses the Win32::TieRegistry module

to query the contents of the Run key on the local system and to
present that information in an easy way to view format:

#! c:\perl\bin\perl.exe
Perl script to demonstrate extracting data from the Run key
on a

live system
use strict;
use Win32::TieRegistry(Delimiter=>"/");

my $reg;
my $r = "SOFTWARE/Microsoft/Windows/CurrentVersion/Run";

if ($reg = $Registry->Open("LMachine",{Access=>0x20019})) {
	if (my $run = $reg->Open($r,{Access=>0x20019})) {
		my %info = $run->Information();
		my $lastwrite = getTime(unpack("VV",$info{"LastWrite"}));
		print "LastWrite: ".gmtime($lastwrite)." Z\n";
		my @vals = $run->ValueNames();
		if (scalar @vals > 0) {
			foreach my $v (@vals) {
				my $data = $run->GetValue($v);
				printf " %-30s %-30s\n",$v,$data;
		}
	}

Tip
While working as a security engineer at a financial services company, I put together a process to help me identify and
address systems that appeared to be infected with malware. Using Perl, I would run a script that would export a list of
all active systems on the network to a file. Then, through another Perl script, I would read that file and query the Run
key within the Software hive on all of the systems. Initially, I got a lot of information back, much of it being legitimate
entries in this key. In relatively short order, I was able to validate the legitimate entries so that I could run the script on
a weekly basis and only get a relatively short list of possibly malicious entries. I have since used or recommended simi-
lar approaches during and following incident response activities.

44   Chapter 2  TOOLS

	else {
		print $r." has no values.\n";
		}
	}
}

#---
getTime()
Get Unix-style date/time from FILETIME object
Input : 8 byte FILETIME object
Output: Unix-style date/time
Thanks goes to Andreas Schuster for the below code, which he
included in his ptfinder.pl
#---
sub getTime() {
 my $lo = shift;
 my $hi = shift;
 my $t;
 if ($lo == 0 && $hi == 0) {
 $t = 0;
 }
 else {
	 $lo -= 0xd53e8000;
	 $hi -= 0x019db1de;
	 $t = int($hi*429.4967296 + $lo/1e7);
 };
 $t = 0 if ($t < 0);
 return $t;
}

There are a couple of interesting things to consider about Perl
scripts, such as the one listed above. For one, using a scripting
language such as Perl (you should note that this applies to other
scripting languages, as well) allows the administrator to add quite a
bit of error checking and handling to the script. For example, what
happens if the name of the key (or in the case of accessing remote
systems, the name of the remote system) is spelled improperly or
not fully known? The administrator can add appropriate checking
in place to write error messages that are useful and meaningful
or can have the script search (via Perl’s grep( ) function) for key or
value names that contain certain sequences of characters.
Another interesting aspect of the above script is the ability to

define the level of access to the Registry using the Access keyword.
In this case, the hex value 0×20019 is used instead of the keyword
“KEY_READ,” which, according to Microsoft [3], allows read (not
write or modification) access to the Registry. This is very impor-
tant when accessing portions of the Registry that may only allow
administrators read access.

Chapter 2  TOOLS   45

Finally, notice the getTime subroutine utilized in the script. This
is a subroutine originally developed by Andreas Schuster [4] to
translate 64-bit FILETIME objects into equivalent 32-bit UNIX time
values. For most purposes, this presents a key’s LastWrite time with-
out any significant loss in granularity with respect to time, in that
the translated time value is presented to the second (FILETIMEs
have a granularity of 100 ns). Another interesting thing to notice
here is code reuse; if you get a piece of Perl code or a snippet of a
script working that’s very versatile or useful (such as Andreas’ code),
all that’s required to reuse that code is cut and paste.
In the late fall and winter of 2008, we (incident responders)

were seeing issues with some new network worms. These worms
were running rampant on customer networks, as they were uti-
lizing standard business functionality to spread. One of the tell-
tale artifacts of these worms (Conficker/Downadup, and so on)
was a randomly named Windows service used as a persistence
mechanism, allowing the worm to continue functioning across
reboots (Windows services within the Registry will be addressed
in greater detail in Chapter 3, “Case Studies: The System”). But
how does an administrator, using the native Windows tools,
reach across the enterprise to determine all of the randomly
named services? One way to do this would be to create a batch
file using reg.exe, but would you be able to query the information
you needed? Most likely, you’d end up with a lot more informa-
tion than you needed, and probably not much of what you really
needed, leaving you to sort through all of it. This being the case,
how fast could you actually respond?
Another option is to use a script similar to the one below,

called regscan.pl. An administrator can run the script from a cen-
tral location and reach out to query information from remote
systems.

#! c:\perl\bin\perl.exe
#---
regscan.pl
Retrieves data from Windows Service Registry keys;
LastWrite times,

ImagePath value (if avail.), Parameters\ServiceDll value
(if avail),

and lists all entries sorted based on LastWrite times.
#
usage: regscan.pl <system_name>
#
Output:
LastWrite Time|ServiceName|ImagePath|ServiceDll
- values are "|" separated
#

46   Chapter 2  TOOLS

Copyright 2010 Quantum Analytics Research, LLC
#---
use strict;
use Win32::TieRegistry(Delimiter=>"/");

my $server = shift || Win32::NodeName;
my $regkey = "HKEY_LOCAL_MACHINE\\System\\CurrentControlSet\\
Services\\";

$regkey =~ s/\\/\//g;
$regkey = "//$server/".$regkey;

my %svcs;
my $remote;
eval {
 $remote = $Registry->Open($regkey, {Access=>0x20019});
};
die "Error occurred connecting to Registry: $@\n" if ($@);

If connected to the key, dump a list of subkeys
my @subkeys = $remote->SubKeyNames();
foreach my $s (@subkeys) {
	my $str = $s;
	my %info = $remote->Information();
	my $lw = getTime(unpack("VV",$info{"LastWrite"}));

eval {
	my $k = $remote->Open($s,{Access=>0x20019});
	$str .= "|".$k->GetValue("ImagePath");
};
$str .= "||" if ($@);

eval {
	my $k = $remote->Open($s."\\Parameters",{Access=>0x20019});
	$str .= "|".$k->GetValue("ServiceDll");
};
$str .= "||" if ($@);
my $type;
eval {
	my $k = $remote->Open($s,{Access=>0x20019});
	$type = $k->GetValue("Type");
};
print " ERROR: ".$@."\n" if ($@);
push(@{$svcs{$lw}},$str) if ($type eq "0x00000010" || $type
eq "0x00000020");}

foreach my $t (reverse sort {$a <=> $b} keys %svcs) {
	foreach my $item (@{$svcs{$t}}) {
		print gmtime($t)."Z"."|".$item."\n";
 }
}

Chapter 2  TOOLS   47

#---
getTime()
Get Unix-style date/time from FILETIME object
Input : 8 byte FILETIME object
Output: Unix-style date/time
Thanks goes to Andreas Schuster for the below code, which
he

included in his ptfinder.pl
#---
sub getTime() {
	my $lo = shift;
	my $hi = shift;
	my $t;
	if ($lo == 0 && $hi == 0) {
		$t = 0;
 }
 else {
	 $lo -= 0xd53e8000;
	 $hi -= 0x019db1de;
	 $t = int($hi*429.4967296 + $lo/1e7);
 };
 $t = 0 if ($t < 0);
 return $t;
}

Regscan.pl takes one argument: to query the name of the sys-
tem. If no name is provided, the local system (that is, the system
that the script is being run on) is queried. The script connects to
the (remote) Registry and enumerates through the services, look-
ing specifically for those that are “own” and “share” processes, as
opposed to kernel or file system drivers. It then sorts the services
based on Registry key LastWrite times and displays informa-
tion about each of the services, such as the LastWrite time, ser-
vice DisplayName value, ImagePath value, and ServiceDll value,
if applicable. All of these values are pipe (“|”) separated, but this
can easily be changed.

MS KB article 962007 [5], “Virus Alert about the W32/Conficker
Worm,” provides a description of the worm, as well as how the
ServiceDll value is used as a persistence mechanism by the worm.
This persistence mechanism is also used by various other worms
and malware.

Running the regscan tool (the Perl script and a “compiled”
Windows executable are provided on the accompanying CD)
is pretty simple, but how would you use or deploy something
like this within an infrastructure, particularly during inci-
dent response activities? Well, some of the issues we’ve seen
have been with Windows services with random names that are

48   Chapter 2  TOOLS

loaded as part of the svchost.exe process. The malware is actu-
ally a Windows dynamic-linked library (DLL), and as such,
when created as a Windows service, it will include a “ServiceDll”
value beneath the “Parameters” subkey within the Registry. To
use regscan tool to see if the local system is infected, we can use
the following simple command line:

C:\tools> regscan | find "svchost" /i

It would probably be much easier to analyze and correlate
this information across multiple systems if we redirected the
output of the command to a file, but this command shows how
we can use custom, open-source tools to collect very specific
information, particularly when native or commercial tools don’t
particularly do the trick. The “compiled” version of regscan tool
can easily be included in a batch file without having to install
Perl on any systems, and run against multiple systems across the
infrastructure.

Again, by providing an executable version of the tool, you do
not need to install Perl on your system. You can, if you choose
to do so, install ActivePerl and use the Perl script provided along
with the “compiled” tool. This will allow you to see what the
script/tool does and modify it to meet your needs.

More than anything else, using scripting languages such
as Perl (or Python, and so on) allows for a greater, more granu-
lar level of control when accessing Registry data. The ability to
access key information (that is, LastWrite time, number of val-
ues, and so on) allows the administrator to add the necessary
program flow in order to implement decisions. This allows for
complex, repetitious tasks to be automated, increasing efficiency
and accuracy.

Tip
There are a number of tools that I’ve written and made available, and those mentioned in this book and that are included
on the accompanying CD were written in Perl and “compiled” for distribution with Perl2Exe. By providing an “execut-
able” version of the tool, you do not need to install Perl on your system, or any other system for that matter; instead,
you simply copy the tool to your system or run the tool from the CD. However, if you choose to make use of tools such
as regscan.pl, you only need to install Perl on your system; you do not need to install Perl on every system within your
infrastructure.

Chapter 2  TOOLS   49

Live Response
Something that is very important to keep in mind when considering
whether to engage in live response activities is that as your actions do
have an effect on the system (processes loaded into memory, files cre-
ated on the system as a result of your actions, and so on), so does your
inaction. Think about it. A live system is running, with things going on
all the time. Even while a system just sits there, processes are running
and actions are occurring on the system. With Windows XP, simply wait
for 24 hours and a System Restore Point will (by default) be automati-
cally created. Wait 3 days and the system will conduct a limited defrag-
mentation of the hard drive. Also, consider the fact that if someone is
exfiltrating data from your systems, then while you wait and do nothing,
they continue to take more data. So, the question of live response really
arises: do I do nothing? or do I take the correct actions to protect my
organization as best I can under the circumstances?

Monitoring the Registry
Often, an analyst wants to conduct Registry analysis by first mon-
itoring the Registry while conducting some sort of action, such as
launching an exploit against a live system, or when installing an
application or launching malware on a system. Rather than que-
rying the Registry for specific values, the analyst wants to observe
changes that occurred to the Registry, by either using before-
and-after snapshots of the Registry or monitoring the Registry
throughout the activity to observe keys that may be read, as well
as keys and values that may be deleted, modified, or created.
Each of these options has their own particular strengths and

weaknesses. For example, comparing snapshots taken before and
after an atomic action (an “atomic action” refers to doing only one
thing, performing one step) can provide a succinct view of what
happened, but there may be a lot going on “under the hood,” and
as such, there may be nothing that differentiates what process
made the observed changes. When monitoring a live system
throughout some activity, it is possible to determine which pro-
cess may have made a change to the Registry (that is, added,
deleted, or modified keys or values), but a great deal of activity
occurs on a live system, and the analyst may be overwhelmed
with the shear amount of available data.
Monitoring tools are most often used in testing scenarios. For

example, analysts performing malware reverse engineering may
launch their malware sample in a controlled test environment
and monitor that malware as it executes in order to see what
interaction it has with the Registry. In many cases, malware may
create or modify an entry in the Registry in order to maintain

50   Chapter 2  TOOLS

persistence on the system, enabling it to survive users logging
out or the system being rebooted. Similarly, application instal-
lations may be monitored in order to determine if they modify
Registry entries, and if so, which ones.
I have used monitoring tools during dynamic malware anal-

ysis and when conducting testing of new versions of Windows.
When Windows 7 became available, one of the things I did was
install monitoring tools so that I could perform normal user
actions (that is, run searches across the system, and so on) and
then see what effect those actions had on the Registry.

Regshot
Regshot is a tool for determining changes made to the Registry,
which is available on SourceForge.net [6]. Regshot is a Registry
compare/diff utility that allows you to take snapshots of the
Windows Registry on a live system and compare them in order
to determine the changes undergone. With such testing tools,
it’s always a good idea to snapshot the Registry before and
after an atomic action, meaning that you perform a single task
(that is, installing an application, launching a program, and so
on). This way, the changes you observe are kept, as much as
possible, free of extraneous information. For example, set up
your test environment to launch a program and snapshot the
Registry. Then, launch the program, and as soon as you get an
indication that the program launch has completed, immediately
create the second snapshot. Again, this is to minimize, as much
as possible, the extra information that appears in your compari-
son report that has nothing to do with our analysis. Figure 2.5
illustrates the Regshot user interface when you first launch the
application.

Figure 2.5  First Stage of Regshot 1.8.2

Chapter 2  TOOLS   51

Clicking the “1st shot” button brings up a context menu with
three options: shot, shot and save, and load. These options allow
you to create a snapshot, create and save a snapshot, or load
a snapshot. If you choose the “shot and save” option, once the
snapshot is created, a “Save As” dialog box will appear and you
can provide a path and filename to save the snapshot (file exten-
sion is “.hiv” by default).
Once the first snapshot has been created, the “1st shot” but-

ton becomes subdued, and the “2nd shot” button is highlighted.
Clicking that 2nd shot button, you get the same options; if you’re
doing some sort of extensive testing, it may be a good idea to go
with the “shot and save” option, documenting (of course) the
name and status of the snapshot for later use.
After the second snapshot has been created and saved, you

can click on the “Compare” button, which will run a comparison
between the two selected snapshots and create a text (unless you
chose HTML) report. Just running two snapshots while writing
this section created and modified entries in my user hive related
to accessing the files and file extensions involved in the test pro-
cess I was describing. It’s beyond the scope of this chapter to
address those changes here, but it is suffice to say that when used
under the appropriate conditions, Regshot can be a very valuable
tool. I had used an earlier version of the tool when I was docu-
menting changes made to the Registry on Windows XP when run-
ning searches (Start | Search | For Files and Folders . . .), and
I had used more recent versions of the tool when researching
similar changes on Vista and Windows 7 systems.
Again, snapshot comparison tools such as Regshot are most

useful in a stringent testing environment, when snapshots can be
made before and after a single atomic action. One thing to keep
in mind about this tool is that it only snapshots the Registry, so
file system changes are not included. However, in a testing envi-
ronment where virtualized systems are used, a snapshot compar-
ison test can be run for just the Registry, the system itself can be
reverted to a previous state, and then snapshot comparisons can
be run separately for the file system.

RegMon
RegMon, or Registry Monitor, is a live monitoring tool that was
originally available through SysInternals.com and is now incor-
porated into the Microsoft Process Monitoring tool [7]. Even
though it is part of the overall ProcMon tool, we can refer to the
Registry monitoring functionality as RegMon. Figure 2.6 illus-
trates the Process Monitor UI, with the Registry Monitor function
indicated.

52   Chapter 2  TOOLS

To run ProcMon, simply download the archive and extract
the executable file, then double-click the icon. The UI illustrated
in Figure 2.6 appears, without the added text or highlighting,
of course. When conducting Registry testing, I usually halt all
monitoring (click on the magnifying glass icon so that a red X
appears over it, as shown in Figure 2.6) and uncheck the various
monitoring functionality, leaving only the Registry monitoring
enabled.
Once you’re ready, in order to enable monitoring of Registry

activity, simply click the icon of the magnifying glass with the red
X, and monitoring will start. You’ll see the user interface quickly
fill up with events, even before you do anything. Quickly perform
the action that you want to monitor and then click the icon of the
magnifying glass to stop monitoring. Once monitoring stops, be
sure to save the contents of the UI to a file and begin your analysis.
One of the useful functions of the UI is that you can filter activities
based on a variety of criteria, such as process names.
Keep in mind, however, that not all pertinent activity occurs

specifically with the application or process in question. The
example I like to use to demonstrate this is to run the Solitaire
card game (something that is, at the same time, harmless and
very visual) that ships with Windows systems. Open a command
prompt and type sol, and you will see the Solitaire card game
open. Close the game and prepare ProcMon to capture data. Start
the capture and then launch Solitaire via the command prompt.

Figure 2.6  MS Process Monitor Tool with Registry Monitor Indicated

Chapter 2  TOOLS   53

Solitaire opens quickly, so immediately go back to ProcMon and
stop capturing data. An interesting activity, an attempt to open
a subkey beneath the “Image File Execution Options” key, is
highlighted in Figure 2.7.
The attempt to access the key highlighted in Figure 2.7 is

standard Windows activity and is in fact provided as a means
for debugging Windows services, as described in MS KB article
824334 [8]. MS KB article 892894 [9] describes how to use this
key to disable the Windows Update service. However, malware
authors also like to use this as a persistence mechanism for
their applications; I should know, as I’ve seen this employed “in
the wild.”
ProcMon provides some very useful functionality, but it also

provides a lot of data! It may behoove you to run several tests and
then look for commonalities among them, or to start by using
tools such as Regshot to develop some initial information and
then expand on that using ProcMon.

Registry Hives in Memory
Although Windows memory collection and analysis is beyond the scope
of this book, it is worth mentioning that Registry hives can be extracted
from memory dumps. Thanks to Aaron Walters’ development of the
Volatility Project (found on the Web site www.volatilesystems.com/
default/volatility) for interacting with Windows XP memory dumps, and
to Brendan Dolan-Gavitt (a.k.a. “moyix,” a developer who works on the
Volatility project) for developing Volatility plug-ins for collecting and
parsing Registry hives, which can be found on the Web site http://moyix
.blogspot.com/search?q=registry.

Forensic Analysis
When I first began writing this chapter, I called this section
“Postmortem Forensic Analysis,” but then I realized that in
some cases, the same tool (or tools) used to access Registry hive

Figure 2.7  Cmd.exe Accessing the “Image File Execution Options” Key

54   Chapter 2  TOOLS

files extracted from an acquired image could be used in other
scenarios, such as via F-Response. Hence, I changed the name
of this section to “Forensic Analysis” because the “Postmortem”
scenario was simply too limited. Compared with the earlier
section, in this section, we’re taking steps to limit the changes to
the system and data.
One of the first things we need to do in order to collect infor-

mation from Registry hive files is to determine how we plan to
access those files, and we will look at two ways to do this in a
manner that minimizes the changes to the data in those files.
One way is to acquire an image of the system and extract the files
from the image via applications such as FTK Imager Lite [10] or
ProDiscover [11]. The second way is to access the drive locally
using FTK Imager Lite, or remotely via F-Response, which can be
found on the Web site www.f-response.com.
Figure 2.8 illustrates an excerpt of the File Listing pane from

FTK Imager Lite 2.9.
Figure 2.8 shows clearly several of the Registry hive files (specifi-

cally the Security, Software, and System files). At this point,
all the analyst needs to do is to highlight, right-click, and export the
files to a convenient location, and begin analysis.
You can also use ProDiscover in a similar manner. After

loading the image file into the project, the analyst can expand
the Content View of the project until the Windows directory
is visible, then navigate to the system32\config directory, and
manually export the Registry hive files from the project. The
analyst would then need to follow the same process with the
hive files from the user profiles. Another method for extracting

Figure 2.8  Excerpt of File Listing Pane from FTK Imager Lite 2.9

Chapter 2  TOOLS   55

the hive files involves creating and using a ProDiscover’s
ProScript, which is ProDiscover’s scripting functionality based
on Perl. A properly crafted ProScript would allow the analyst to
load an image and then run the ProScript to export all of the
necessary hive files to an appropriate location.

An alternative method for extracting not the hive files them-
selves but specific data from the hive files involves the use of
ProDiscover’s Registry Viewer. Figure 2.9 illustrates the populated
Registry View in a ProDiscover v6.5 project.

After loading an image file into a ProDiscover project and
opening the file structure in the Content View, the analyst
then right-clicks on the Windows directory and chooses “Add
to Registry Viewer.” ProDiscover will locate the hive files
in the system32\config directory, as well as those in the user
profiles, and populate the Registry View with the appropriate
information. Once this has been completed and the project
saved, the analyst can use ProScripts to extract specific
information from the Registry. Several such ProScripts were
provided on the CD that accompanies Windows Forensic
Analysis, Second Edition.

F-Response
Earlier in this chapter, I mentioned using an application called
F-Response, which we can use to get access to Registry hive files
on live remote systems. Figure 2.10 illustrates the F-Response

Figure 2.9  ProDiscover v6.5 Project with Registry View Populated

56   Chapter 2  TOOLS

Enterprise Management Console (FEMC) open and connected to
a system and the corresponding mounted local disk (drive F:\).
The setup and use of F-Response is beyond the scope of this

book, and best addressed and understood by visiting the Web site
www.F-response.com, purchasing the appropriate F-Response
product and viewing the provided videos. F-Response provides a
means for accessing disks, volumes, and even memory on remote
Windows (and other operating systems, although memory isn’t
supported in all cases) systems in a read-only manner. This capa-
bility is extremely useful when you need immediate response to
remote systems or for surreptitious acquisitions as there is no
user interaction required on the remote system (if you’re using
F-Response Enterprise Edition). Once you access the remote
system, you can perform any task that is necessary, from identi-
fying and copying files to using tools such as FTK Imager Lite to
acquire an image of the drive. For our purposes, simply accessing
the mounted local disk (F:\ in our example above) and copying
the Registry hive files of interest, through manual or automated
means, are all that need to be done.

Figure 2.10  FEMC and Mounted Local Disk

Chapter 2  TOOLS   57

There is a Perl script provided on the CD that accompanies
this book called grab.pl (an EXE version of the script, compiled
with Perl2Exe, is also provided), which allows an analyst using
F-Response to mount volumes from remote systems as local
disks to automate the copying of files, in particular Registry
hive files. The script is a command-line interface (CLI) tool, so
to view the options, simply type grap.pl –h (or “grab –h” if you
choose to use the “compiled” version) at the command prompt.
You can use this script after you’ve installed F-Response on a
remote system and mounted the C:\ volume as a local drive on
your system (F:\ in the above example). Once you’ve done that,
you can run the script with the –d switch to identify the drive
letter in question, and grab.pl will read a list of files to collect
from the remote system (default is “files.txt”; however, the ana-
lyst can create separate files specific to various incidents). Grab.
pl reads in the list of files (and their paths), and if it finds each
file, it calculates a hash for the file, copies it to a local directory,
and then compares the hash of the copied file to ensure that no
changes have occurred to the file. The script also logs all of its
activity, so you can see the actual hashes that were generated for
each file and the results of the hash comparison. Grab.pl can also
be used when an acquired image file is mounted locally using a
tool such as ImDisk [12] or SmartMount [13]. This kind of auto-
mation increases efficiency and reduces mistakes that can occur
when performing repetitive tasks, such as connecting to a large
number of systems (via F-Response) and copying the Registry
hive files. Scripts like this are also more efficient than batch files
that simply copy all files in selected directories as many of the
files may not be required, and it takes a great deal of time to copy
all of these unnecessary files. If you open grab.pl in an editor,
you’ll see that it has code that allows it to locate user profiles and
copy just the NTUSER.DAT files, rather than copying the entire
contents of all profiles.

Scripts and tools such as grab.pl are used to obtain the nec-
essary files for analysis rather than to conduct the actual analy-
sis. Once you have the files that you need, you can then use other
tools to perform the appropriate analysis.

MiTeC Registry File Viewer
Once the hive files have been extracted, they can be loaded into a
viewer application such as the MiTeC Windows Registry File Viewer
(listed as “Registry Viewer 2.0” at www.mitec.cz/Data/XML/data_
downloads.xml), as illustrated in Figure 2.11.

The Registry File Viewer (RFV) is an extremely useful tool,
which allows the analyst to view and navigate through a hive file

58   Chapter 2  TOOLS

just as they would as if they were using RegEdit, with the notable
exception that the hive files being viewed are not “live.” Clicking
on keys in the left-hand pane causes the values to appear in
the right-hand pane. Right-clicking on a key and choosing Key
Information from the drop-down dialog box causes the Key
Properties dialog to appear, as illustrated in Figure 2.12.
As illustrated in Figure 2.12, the analyst can quickly see the

relative offset of the key, as well as the LastWrite time of the key,
identified in the “Date Modified” entry.

Figure 2.11  MiTeC Windows Registry File Viewer UI

Figure 2.12  Key Properties Dialog

Chapter 2  TOOLS   59

RFV also provides the capability to search through the hive
file. When hits are found, double-clicking that hit takes you
directly to that specific item in the main view of the application.
In addition to searching, if you click on Tools from the menu
bar, you’ll see “Spy & Analyze” in the drop-down menu, with four
additional entries: UserAssist, StreamMRU, SAM, and Windows.
With the appropriate hive file loaded, choosing any of these

will provide some interesting parsing capabilities. For example, if
you open a SAM hive file in RFV and choose SAM from the Spy &
Analyze choices, the application will parse through the SAM and
provide the embedded information in an easily readable format.
Once you’ve done this, right-click in the display and choose Save
File to save the parsed output.
Figure 2.13 illustrates the results of running the UserAssist Spy &

Analyze function with a user’s hive file opened in RFV. You can
see the raw values listed with their binary data, and immediately

Note
The usefulness of specific keys and values, such as the UserAssist key contents, the StreamMRU, the SAM hive, and the
ACMru key mentioned later in this chapter, will be discussed in detail in Chapters 3 and 4 of this book. For now, these
keys and values are being mentioned here in order to demonstrate the functionality of specific tools.

Figure 2.13  RFV Showing Results of Spy & Analyze UserAssist

60   Chapter 2  TOOLS

following each entry, the translated (via ROT-13 decoding) value
name, with the last time the application was launched is listed. As
we will see in Chapter 4, “Case Studies: Tracking User Activity,” the
time stamp listed is extracted from the binary data of the value.

RegRipper
Like many of the tools I write and use, RegRipper was a tool born
out of necessity. During analysis of Windows systems, I found
myself accessing the Registry hive files over and over again,
sometimes looking for the same keys and values in case after
case. Like many, I started out with a list of keys and pertinent val-
ues and wanted to make things easier on myself, so I wrote a cou-
ple of scripts, all of which did very similar things, such as open a
hive file, locate a key or value, and then print out what was found
(if anything). I then found that I was running the same script over
and over on the same sorts of hive files (Software, NTUSER.DAT,
and so on), so I decided to “bind” the scripts together in a batch
file so that all I had to do was point the batch file at a file, and all
of the scripts would be run.
This seemed like a good approach at the time. However,

it wasn’t very flexible or scalable. What I really wanted was a
scanning engine that would take a plug-in, or a series of plug-ins
(as a “profile”), and run them across a Registry hive file, giving me
the results and an audit log of activity. From this, RegRipper (GUI
illustrated in Figure 2.14) was born.
RegRipper has proved to be extremely useful and flexible. In

short, the RegRipper GUI illustrated in Figure 2.14 is an interface
to an “engine” of sorts. Behind the scenes, RegRipper processes
sets of instructions listed in plug-ins files. This is similar to tools
such as Nessus (a popular vulnerability scanner based on a plug-
in architecture, found on the Web site www.nessus.org/nessus/),
which consists of a scanning engine and a series of plug-ins that
contain instructions. The RegRipper plug-ins files are kept in the
“plug-ins” subdirectory within the directory where RegRipper is
installed, and each plug-in tells the RegRipper engine to which
hive file the plug-in applies, which key(s) or value(s) to look for,
and what to do once they’ve been found. For example, plug-ins
can be very simple and can simply look for a Registry key, and
then list a single value, if found, or all values beneath that key.
Or a plug-in can contain several keys, the contents of which are
correlated, and a consolidated view of the data provided by the
plug-in.
Plug-ins can also provide specific output formats. One method

I have found very valuable in processing Registry information is
to collect a good bit of time-stamped information (that is, Registry

Chapter 2  TOOLS   61

key LastWrite times, time stamp data collected from value data,
and so on) and then to sort that information, listing it in the
output based on the most recent time first. This has been very
helpful not only in visualizing what happened but also in deter-
mining when an incident may have occurred, and what activi-
ties may have occurred following that date/time. There are also a
number of binary values (as we’ll see in Chapters 3 and 4) within
various Registry keys whose structure contains specific pieces of
information, and that binary data need to be parsed in a specific
and often a unique manner. Plug-ins can make use of the code
provided by the overall application itself, but also parse those

Figure 2.14  RegRipper GUI Interface

62   Chapter 2  TOOLS

unique structures and provide the analyst with easy to read and
understand information.
The drop-down list illustrated in Figure 2.14 tells which plug-

ins file or profile (a “plug-ins file” or “profile” is a list of plug-
ins) the RegRipper engine should run. This drop-down list is
populated when the RegRipper application is launched and can
include a number of user-created plug-ins files.

Rip.pl
Rip.pl is a CLI version of the RegRipper GUI tool, something that
I developed originally for testing purposes. It was very easy when
developing a new plug-in to keep running the same plug-in over
and over against the same hive file, tweaking the performance
and output and making other necessary adjustments as I went
along.
Typing just rip.pl at the command line (or “rip.pl –h”) provides

the syntax information for the tool, which is shown below:

C:\Perl\tools>rip.pl
Rip v.20090102 - CLI RegRipper tool
Rip [-r Reg hive file] [-f plugin file] [-p plugin module] [-l]
[-h]

Parse Windows Registry files, using either a single module, or
a plugins file.

All plugins must be located in the "plugins" directory;
default plugins file

used if no other filename given is "plugins\plugins".

	-r Reg hive file...Registry hive file to parse
	-gGuess the hive file (experimental)
	-f [plugin file]...use the plugin file (default: plugins\
   plugins)

	-p plugin module...use only this module
	-llist all plugins
	-cOutput list in CSV format (use with -l)
	-h.................Help (print this information)

Ex: C:\>rip -r c:\case\system -f system
	 C:\>rip -r c:\case\ntuser.dat -p userassist
	 C:\>rip -l -c

All output goes to STDOUT; use redirection (ie, > or >>) to
output to a file.

copyright 2008 H. Carvey

As you can see from the syntax/usage information for rip.pl/
.exe, there’s some considerable functionality in this tool. I use

Chapter 2  TOOLS   63

rip.pl quite often for both testing of newly developed plug-ins,
running individual plug-ins, and for running plug-ins that may
take some time (a few minutes or more) to run, as I don’t want to
try to run them as part of the RegRipper GUI and have the inter-
face appear to hang or stop functioning. Also, there are just times
when I may only want specific information for an examination,
such as the contents or LastWrite times of the UserAssist or the
RecentDocs subkeys. It’s simply much faster and more efficient
for me to run one or two specific plug-ins via rip.pl than it is to
run all of the plug-ins in a profile via RegRipper, and then open
the output file and find the specific bits of information that I’m
looking for.
Also, as you can see, rip.pl does have the “-f” switch that

allows you to run entire plug-ins files against a specific hive file,
as opposed to running one plug-in at a time. To do so, simply run
a command similar to the following:

C:\tools>rip.pl -r d:\cases\training\files\software -f software

The above command line provides the same functionality as
using RegRipper to run the “software” plug-ins file against the
specified hive file, except that the output in this case goes to the
console. You may want to pipe the output through “more” (that is,
append “| more” to the command) to see the output scroll by one
screen at a time or redirect the output to a file, appending “> file”
to the command. This capability can be used to automate the
collection of Registry information from hive files extracted from
an image or from an image mounted as a drive letter (read-only,
of course) on your analysis system. For example, create a batch
file called regrip.bat in the same directory as RegRipper and
include the following lines:

@echo off
Echo Scanning Software hive. . .

Tip
Sometimes during an examination, I’ll need to determine the likelihood of a user profile having been logged into the
system or accessed during a specific timeframe. In some cases, a good way to get a “feel” for this is to run rip.pl against
a user hive, using the UserAssist or RecentDocs plug-ins; reviewing the time stamps from the Registry keys and values
can provide an indication of when the user account was logged in by illustrating user activity that occurred during that
time. Again, the specifics of these keys will be discussed in Chapter 4, “Case Studies: Tracking User Activity”; they
are mentioned here simply to demonstrate the use of rip.pl to collect information that may be of interest to a specific
examination.

64   Chapter 2  TOOLS

rip -r %1\software -f software
Echo Scanning System hive. . .
rip -r %1\system -f system
Echo Scanning SAM hive. . .
rip -r %1\sam -f sam
Echo Scanning Security hive. . .
rip -r %1\security –f security

To run this batch file, use a command line similar to the fol-
lowing if you’ve extracted the hive files out of an acquired image
and put them into a case-specific “files” directory:

C:\tools>regrip.bat d:\cases\training\files

The output of the commands within the batch file will be dis-
played in the console (that is, STDOUT) of the command prompt
window, so if you want to keep the output, be sure to redirect it to
a file.
To run this batch file if you’ve mounted the acquired image as

a read-only drive letter (that is, H:\) on your analysis system, you
can use a command line similar to the following:

C:\tools>regrip.bat H:\Windows\system32\config > D:\cases\
files\regrip.txt

In both cases, the batch file assigns the single command
line argument provided (which is the path to the directory
where the hive files are located, provided without a trailing
slash) to the variable “%1” and uses that to populate the vari-
able throughout the included commands. In each instance,
rip.exe runs the specified plug-ins file against the appropri-
ate hive file and redirects the output to a text file. All of this is
done automatically, and works very well, assuming that the hive
files are where they should be. Admittedly, the provided batch
file is very simple and does not include a great deal of feed-
back or error checking, but it can be used quite effectively in a
number of analysis scenarios. Analysts familiar with batch file
programming (or willing to search Google for hints) can extend
the batch file to meet their needs.
Another use for rip.pl is to get a listing of the available plug-

ins. For example, running rip.pl with just the “-l” switch (see the
syntax information listed above) will tell the script to go to the
hard-coded plug-ins directory (that is, the “\plugins” subdirec-
tory located within the current working directory) and list all of
the available plug-ins. An excerpt of the output of this command
appears as follows:

162. winver v.20081210 [Software]
	- Get Windows version

Chapter 2  TOOLS   65

163. winzip v.20080325 [NTUSER.DAT]
	- Get WinZip extract and filemenu values

164. win_cv v.20090312 [Software]
	- Get & display the contents of the Windows\CurrentVersion
   key

165. wordwheelquery v.20100330 [NTUSER.DAT]
	- Gets contents of user’s WordWheelQuery key

166. xpedition v.20090727 [System]
	- Queries System hive for XP Edition info

As you can see, the output includes the number of plug-ins,
which is a count maintained by the script; plug-ins themselves
are not numbered. You can also see the name and version of
the plug-in, as well as the hive for which it is intended, and the
short description of what the plug-in does. You can also get this
information in .csv format by using the “-l” and “-c” switches
together. An excerpt of the output of this command appears as
follows:

winver,20081210,Software,Get Windows version
winzip,20080325,NTUSER.DAT,Get WinZip extract and filemenu
values

win_cv,20090312,Software,Get & display the contents of the
Windows\CurrentVersion key

wordwheelquery,20100330,NTUSER.DAT,Gets contents of user’s
WordWheelQuery key

xp�edition,20090727,System,Queries System hive for XP Edition
info

Redirecting the output of the command (that is, rip.pl –l –c >
plugins.csv) will allow you to open the list of plug-ins in Excel
or some other spreadsheet software. From there, you can sort
on third column in order to group the plug-ins together by their
target hives, and so on.
Another means for managing the plug-ins listing at the command

line is to use the find command. For example, to list those plug-ins
for the Software hive, you can easily use the following command:

C:\tools>rip.pl —l —c | find "Software"

Now, this command will print out all lines that include the
word “Software,” but it is relatively easy to tell which plug-ins are
intended to be run against which hive files.
Rip.pl also includes the -g switch, which at the time that the func-

tionality was written was a pretty experimental bit of functionality.
Over time, and with testing, the functionality has proven to be very

66   Chapter 2  TOOLS

accurate. The idea is that the switch allows rip.pl to guess the type
of hive file that it’s looking at; it does this by looking for specific core
sets of Registry keys that should exist in specific hive files. In order to
use this functionality, all you would need to do is run the following
command:

C:\tools>rip.pl —r D:\cases\test\software —g

The above command returns “software 5 1”; this isn’t all that
surprising, considering that the hive file is named “Software.”
However, Adam James and Matt Churchill used this code to mod-
ify RegRipper so what it could be run against images mounted on
an analysis system as a drive letter [14].
Rip.pl isn’t the only tool available for managing plug-ins;

shortly, we’ll discuss the Plugin Browser, which provides a GUI
for plug-in management.

RipXP.pl
RipXP is a unique version of rip.pl/.exe that was written specifically
for Windows XP. One of the things I had wanted to do, and some-
thing Rob Lee once said, “hey, wouldn’t it be cool if you could . . .,”
was to run a single plug-in against not only a specific hive file on a
Windows XP system but also to have that same plug-in run automat-
ically against the hive files stored in any and all available Windows
XP System Restore Points. For that purpose, I developed ripXP.pl,
and the “XP” in the name referring to the fact that it is intended only
for Windows XP, as that is the Windows operating system that main-
tains System Restore Points in the format accessed by the tool. The
syntax information for ripxp.pl appears as follows:

C:\Perl\tools>ripxp.pl
RipXP v.20090818 - CLI RegRipper tool
RipXP [-r Reg hive file] [-p plugin module][-d RP dir][-lgh]
Parse Windows Registry files, using either a single module
from the plugins folder. Then parse all corresponding hive
files from the XP Restore Points (extracted from image)
using the same plugin.

	-r Reg hive file...Registry hive file to parse
	-gGuess the hive file (experimental)
	-d RP directory....Path to the Restore Point directory
	-p plugin module...use only this module
	-llist all plugins
	-h.................Help (print this information)

Ex: C:\>ripxp.pl -g
	� C:\>ripxp.pl -r d:\cases\ntuser.dat -d d:\cases\svi
  -p userassist

Chapter 2  TOOLS   67

All output goes to STDOUT; use redirection (ie, > or >>) to
output to a file.

copyright 2008 H. Carvey

There’s a little work required in order to run ripxp.pl (or the
.exe version) correctly. System Restore Points are maintained in
the “System Volume Information” directory, and NTFS permis-
sions prevent even Administrators from directly accessing that
directory. The least complicated way to handle this issue when
your analysis system is running Windows is to open your acquired
image in FTK Imager (or the Lite version, both of which are freely
available from AccessData) and to extract the Restore Point direc-
tories to a directory structure on your analysis system, as illus-
trated in Figure 2.15.
Once you’ve extracted the Restore Point directories in a manner

similar to what’s illustrated in Figure 2.15, be sure to also extract
the “live” Registry hives from the image as well. In the example

Figure 2.15  Extract RP Directories via FTK Imager for Analysis

68   Chapter 2  TOOLS

illustrated in Figure 2.15, I extracted the files to the “training\Files”
directory. Now, to run ripXP against the “live” System hive and the
corresponding System hives in the Restore Point directories, sim-
ply use the following command:

C:\tools>ripxp –r d:\training\Files\System –d d:\training\rp
–p mountdev

It should be easy to see that ripXP is best used with plug-ins
that extract data that may have changed over time. In the case of
the above example, as various external devices are attached to the
system, we would expect some of the values to change, particu-
larly those that begin with “\DosDevice\.” Another plug-in that
may be useful to run across the System hives in the Restore Points
is shares.pl; this may provide you with information about shares
that were available at some point in the past, when a Restore
Point was created, but has since been removed or “unshared.”
Another example where this would be extremely valu-

able would be to run the userassist.pl plug-in against a user’s
NTUSER.DAT hive (found in the root of the user profile, as
described in Chapter 1, “Registry Analysis”), as well against all
those hives available in the System Restore Points, using the fol-
lowing command:

C:\tools>ripxp –r d:\training\Files\ntuser.dat –d d:\training\
rp –p userassist

The value of the contents of the UserAssist key will be
addressed in greater detail in Chapter 4, “Case Studies: Tracking
User Activity,” but it is suffice to say at this point that there may
be a great deal of information available, particularly on a heavily
used system. Over time, some keys and values may be updated,
modified, or even deleted, and being able to see what was avail-
able at some point in the past can be (and believe me, has been)
of great value to an analyst.
A tool like this can also be used to great effect when Registry

keys or values have been deleted. There are tools that will
delete certain keys; for example, Window Washer (version 4.7)
would delete the user’s RecentDocs (also discussed in detail in
Chapter 4, “Case Studies: Tracking User Activity,”) key. We will
discuss in some detail later in this chapter how deleted keys and
values can be recovered from unallocated space within a hive file,
but having the ability to retrieve historical data from the Registry
can be extremely valuable. Not only can we retrieve deleted keys,
but being able to go back in time and get historical information
about key and value contents from points in the past can be
extremely valuable.

Chapter 2  TOOLS   69

One final point about this tool: ripXP is not intended to be
used to analyze Registry hives from Volume Shadow Copies.
This is a completely different backup technology employed on
Windows Vista systems and beyond and does not operate or
provide data in a manner similar to Windows XP System Restore
Points.

Plugin Browser
Earlier in this chapter, we discussed plug-in usage and man-
agement via the command line using rip.pl/.exe. I’ve also writ-
ten a tool called the Plugin Browser that allows you to manage
plug-ins via a graphical user interface, which is illustrated in
Figure 2.16.

Figure 2.16  Plugin Browser UI

70   Chapter 2  TOOLS

The Plugin Browser is fairly straightforward and simple to
use. At the very top of the UI is where you can select the plug-ins
directory. Once you select the directory, all of the plug-ins are
read by the browser and used to populate the list box in the
Browse tab. When you select a plug-in in the list box, information
about the plug-in (that is, the same information extracted by
rip.pl) is displayed to the right. This allows you to easily browse
through the various plug-ins, checking versions and seeing what
each does (based on the short description).

The Plugin Browser also has a Plugin File tab, which you can
use to create your own plug-ins files. Remember, RegRipper
parses plug-ins files (several of which are included with the dis-
tribution of RegRipper on the CD that accompanies this book),
which contain lists of plug-ins to be run against a hive file.
Clicking on the Plugin File tab in the Plugin Browser UI provides
a slightly different interface, as illustrated in Figure 2.17.

Figure 2.17 shows the Plugin File tab that provides a number
of different options via the buttons in the middle of the window.
From the Browse tab, you can locate various plug-ins of interest
and then go to the Plugin File tab and click the .. button to
add that plug-in to a plug-ins file. The “,,” button allows you to
remove a plug-in from a plug-in file. The Open button allows you
to open a current plug-in file in the editor window to the right,
and the Save button allows you to save the contents of the edi-
tor window to a plug-in file. This allows you to customize plug-
ins files for your own use, based on your goals and needs, for any
type of examination you may be conducting. For example, you
may have examinations where you would like to see everything
that all of the available plug-ins for the Software hive can extract,
but for other examinations, you may only want to see certain
things. By creating specific plug-ins files, you can focus your
analysis and look for those items of interest for that particular
examination.

Note
Within RegRipper, the plug-ins directory is hard coded so that all plug-ins are maintained in the “\plugins” subdirectory
within the current working directory where RegRipper (and rip.pl/.exe, as well as ripxp) are kept. Looking toward future
developments for tools such as RegRipper, I opted to allow the analyst to select the plugins directory; RegRipper is
open-source, and given some of the modifications that have been made to it thus far, I wouldn’t be surprised if someone
developed a version where the plug-ins directory could be selected by the analyst.

Chapter 2  TOOLS   71

Keep in mind, however, that this is not the only way to cre-
ate plug-ins files. Notepad or any other editor can be used to
create a plug-ins file. Simply create a file with no extension (that
is, “notepad ntuser2”) in the plug-ins directory, add any com-
ments you would like (comments are lines that start with “#”),
and then list the plug-ins you would like to run in the order that
you would like to run them. If the order doesn’t matter, just add
plug-ins!

Writing Plug-ins
Right up front, I’ll say it, writing RegRipper plug-ins requires
some programming knowledge, particularly Perl. However,
it’s not an absolute requirement, as some very simple, albeit use-
ful plug-ins can be (and have been) written simply by copying

Figure 2.17  Plugin Browser Used to Create a Plug-ins File

72   Chapter 2  TOOLS

code out of or modifying existing plug-ins to meet specific needs.
This approach is a lot more immediate (and responsive) than
contacting an outside source for assistance. There are a num-
ber of plug-ins available that determines if a key or value exists,
queries specific values, retrieves all values from a key, and even
query and correlate the content of multiple keys. There are plug-
ins that parse value data to retrieve specific information, as well
as translate value names, and even use Perl data structures and
built-in functions to organize collected data into something
understandable. Given the various techniques employed in the
available plug-ins, I would think that there would be very little
that couldn’t be done using the existing code base as examples.
RegRipper was provided as an open-source project, and even

though I provided Windows .exe files, this was done simply to
make the tools easier for folks who didn’t want to install Perl in
order to use the tools. This proved to be effective, and providing
the actual Perl code allowed anyone who was interested to take
a peek at it or even to take a crack at modifying it. Since the code
was made available, there have been a number of minor changes
that folks have sent, or simply posted to lists or to their own
blogs. There have also been requests and recommendations for
larger, more encompassing changes, and although some of those
will likely be included in a future version of the RegRipper tools,
some of them will be left to the user. After all, RegRipper is open
source.
Speaking of open source, in October 2008, Jason Koppe posted

to his blog [15] that he’d modified James Macfarlane’s regview.pl
code to create a simple plug-in generator script. In his blog post,
Jason discusses how he modified the regview.pl script (provided
with the Parse::Win32Registry module) to create a simple plug-in
generator script. Jason provides several images in his post, one of
which illustrates the output of a plug-in created with the plug-in
generator.
Don Weber, author of the Security Ripcord blog (and a for-

mer Marine and good friend of mine), has used his familiar-
ity of programming to create several RegRipper plug-ins, which
he has made available through his blog [16]. Don specializes on
programming in Python, and I greatly appreciate the fact that he
stepped over to “the dark side” to dabble in a little Perl. Hey, it
was for a good cause!
Don’s not the only one to have written his own plug-ins. Chris

Pogue, whom I used to work with on at IBM and is now work-
ing for TrustWave, has let me know that one of the members of
his team had written a plug-in or two to meet their own needs,
based on things they were seeing on engagements. At the end

Chapter 2  TOOLS   73

of August 2010, Michael Hale Ligh (who describes himself as
“a [malware] reverse engineer who specializes in vulnerability
research and malware cryptography”) sent me a chapter of his
upcoming book, Malware Analyst’s Cookbook and CD: Tools and
Techniques for Fighting Malicious Code (to be published by Wiley
Publishing; as of this writing, there is no release date available),
to review; in that chapter, he described the use of RegRipper in
malware detection efforts and wanted to be sure that his descrip-
tion was technically accurate. Michael also described several
plug-ins that had been written to enumerate persistent routes,
“ShellExecute” hooks, and pending file deletions, to name a few,
from the appropriate Registry hives. Esten Rye, of the RyeZone.
net blog, wrote his own plug-in in March 2010, based on already-
available plug-in, to extract the home page loaded by Internet
Explorer when a user launches the browser. This shows that
creating your own plug-in is simple enough, and some folks who
have little to no programming experience have done so, simply
due to their own needs.

Requesting Plug-ins
When I first released RegRipper, I recognized that not everyone has the
ability (or interest) to program, and as such, I have offered to write plug-
ins for people who needed them. However, I have made one consistent
request: be clear and concise about your request and provide a sample
hive file. I say this because most times, analysts will see something in
another tool, and think, “hey, it would be great to have that in RegRip-
per,” without knowing what goes on under the hood. I’ve had requests
for plug-ins to parse Registry keys and values used by specific applica-
tions that, to be honest, I may not have access to; I’ve also been asked
to parse values from keys that may appear to be part of every Windows
installation, but simply aren’t. When someone has provided a clear, con-
cise request, and a sample hive file, I’ve been able to turn it around in as
quickly as 20 min. The longest time it has ever taken me to provide the
plug-in was about 4 h, and that was only because I wanted to tweak the
output to make it a bit easier to read.

So, given all of this, how do you write a plug-in? Well, to start
with it helps to keep the framework provided by RegRipper
in mind. If you’re running RegRipper (or rip.pl/.exe) as a
Windows executable, most of the necessary Perl modules have
already been provided for you, bundled along with the execut-
able. If you’re running the tools as Perl scripts, you’ll need to
make sure that you’ve already installed the required modules.
Fortunately, ActiveState’s ActivePerl distribution has a nice little
tool, the Perl Package Manager (PPM), which makes this a really
easy job. Fortunately, RegRipper itself (rr.pl) only relies on two

74   Chapter 2  TOOLS

modules: Win32::GUI and Parse::Win32Registry. These modules
can be easily installed using the following commands:

C:\Perl>ppm install parse-win32registry
C:\Perl>ppm install win32-gui

Running these commands from the command line will install
the necessary modules and dependencies for you. The other tools,
rip.pl and ripxp.pl, only require the use of the Parse::Win32Registry
module.
In order to begin writing a plug-in, you’ll need an editor. I pre-

fer UltraEdit that can be found on the Web site www.ultraedit
.com because it does syntax highlighting (Perl functions and key
words are displayed in colored text, making it easy to find mis-
spelled keywords), provides line numbering in the editor (makes
it easy to track down coding errors), does auto-indenting when
you’re writing functions or subroutines, and it is a great hex edi-
tor for troubleshooting. There are other editors available, such as
Open Perl [17], EPIC [18], and PADRE [19], but even something
as simple as Notepad (or even the old DOS “edlin”; how’s that for
“carbon dating”?) will work for very basic coding needs.
Now that we’re ready to write a plug-in, we’ll walk through

one of the current plug-ins to use as an example. One very simple
plug-in is acmru.pl, a plug-in that lets us retrieve information
about searches run on Windows XP systems when the user clicks
Start | Search | For Files and Folders. The name of the plug-in is
derived; in this case, from the name of the Registry key of inter-
est, which is “ACMru.” So the name of the plug-in file itself is
“acmru.pl.” The first thing I generally like to put in the beginning
of the file is a comment header section, which are all ignored by
the Perl interpreter when the script is run because they’re just
comments. While we don’t put code we want executed in this
section (each line starts with “#”), we can put things here like
the name of the person who wrote the plug-in, the version, any
references or special items that someone can use later to better
understand what the plug-in is attempting to achieve.
As this is a plug-in, the next thing we need is a package name.

In the case of the RegRipper plug-ins, the package name is the
same as the plug-in file name, without an extension: “acmru.”
After that, there is a Perl hash that contains configuration infor-
mation: %config. The settings in this hash can be accessed (just
read) by RegRipper and other tools through functions provided
by the plug-in. The configuration hash has a number of standard
keys that refer to the hive file that the plug-in is written for (that
is, SAM, Software, System, and so on), and the version, which is
essentially the date that the plug-in was written in YYYYMMDD

Chapter 2  TOOLS   75

format. This configuration information can be accessed by exter-
nal tools once the plug-in is loaded by calling the getConfig()
function of the plug-in. Other functions (or subroutines) can pro-
vide similar access to the plug-in for the exchange of information.
So far, this is what the contents of our plug-in looks like:

Comments here
package acmru;
use strict;

my %config = (hive   => "NTUSER\.DAT",
	 hasShortDescr => 1,
	 hasDescr    => 0,
	 hasRefs    => 0,
	 osmask    => 22,
	 version    => 20080324);

sub getConfig{return %config}
sub getShortDescr {
return "Gets contents of user’s ACMru key";

}
sub getDescr{}
sub getRefs {}
sub getHive {return $config{hive};}
sub getVersion {return $config{version};}

my $VERSION = getVersion();

You’ll notice that we have a couple of subroutines (getDescr(),
and so on) that don’t seem to do anything, and they don’t. They’re
provided as part of a template I developed early on when I was
writing plug-ins so that I didn’t have to keep writing everything
over again from scratch each time I wrote a plug-in. You can see
that the getShortDescr() subroutine simply returns a string that
provides a brief description of what the plug-in is supposed to
do, but it doesn’t provide any details as to how the plug-in func-
tions. These subroutines provide a means by which the plug-in
can provide information to the calling program (RegRipper, rip,
or ripxp). For example, whichever program is running a plug-in
can call getVersion() to get the version of the plug-in being run so
that information can be logged as part of the overall examination
documentation.
At this point, we’re ready to have the plug-in actually do

some work. All of the core work performed by the plug-in is
in the pluginmain() function of the plug-in, and every plug-
in has a pluginmain() function. When RegRipper parses the
plug-ins file (or profile) and loads the first plug-in, it calls the
pluginmain() function of the plug-in to get the work done.
Pluginmain() takes one argument, the path to the hive file

76   Chapter 2  TOOLS

to be accessed. In our case, the ACMru key only exists in the
NTUSER.DAT hive file on Windows XP systems; that is, you
won’t find an ACMru key in the System or Security hives on
Windows XP.

Now, RegRipper does provide some services or functionality
to the plug-ins. For example, there has to be a way to log infor-
mation about what happens within the plug-in, as well as report
the plug-in’s findings if everything goes well. RegRipper pro-
vides a couple of functions that the plug-ins can use to provide
this information; specifically via the logMsg( ) and rptMsg( )
subroutines. The logMsg( ) subroutine allows the plug-in to send
messages to the log file maintained by RegRipper so that the ana-
lyst can troubleshoot any issues that occur, and the rptMsg( )
subroutine allows the plug-in to report its findings to the report
file illustrated in Figure 2.14; the log file is automatically gener-
ated in the same directory where RegRipper lives). The plug-ins
then call these functions using ::logMsg( ) or ::rptMsg( ), provid-
ing the strings that should appear in the appropriate file.

Rip.pl and ripxp.pl also provide these functions (they must, in
order to use the plug-ins), but provide different functionality. Rip.
pl doesn’t maintain a log file of its activity, so its own logMsg( )
subroutine is an empty shell that does absolutely nothing with
the string that’s sent to it. The rptMsg( ) subroutine, on the other
hand, simply prints whatever is sent to it to the console (that
is, STDOUT) rather than to a file. This allows the analyst to use
redirection to send the output to a file.

Tip
RegRipper also provides a getTime() function, which can be used to translate 64-bit FILETIME objects into 32-bit Unix
epoch time, which can then be presented in human-readable format using built-in Perl functions, such as gmtime().

Note
Rip.pl, provided with RegRipper, contains code that allows it to guess the type of hive file being accessed. This was
experimental at the time that it was written but has proven over time to be very reliable. However, in the version of
RegRipper provided on the CD that accompanies this book, that functionality is not fully available in the entire suite
of tools.

Chapter 2  TOOLS   77

At this point, we’ve covered the basics of writing RegRipper
plug-ins. The rest of what’s required is based on basic Perl pro-
gramming and reading the documentation that is installed with
the Parse::Win32Registry module. RegRipper and its companion
tools rely on the Parse::Win32Registry module and use the func-
tions provided by that module such as get_list_of_subkeys( ) and
get_list_of_values( ), both of which return Perl lists (or arrays).
These functions are used to navigate through “live” portions of
the Registry hive file in order to retrieve the required data. For
example, some applications (MS Office, in particular) list their
active keys beneath a specific key that identifies the current ver-
sion of the application installed, and previously installed versions
are considered defunct. Therefore, when searching for the appro-
priate keys and values, you’ll first have to navigate to one specific
key path, list all of the subkeys, determine which is most recent,
and then continue navigating beneath that key to get the data in
which you’re most interested.
Returning to the acmru.pl plug-in, we first get the list of values

beneath the ACMru subkey of interest, using the aforementioned
get_list_of_values() subroutine. From there, we step through each
available value, getting the name and its data, and placing that
information into a Perl hash, using the value name as the key.
The code that does this appears as follows:

my %ac_vals;
foreach my $v (@vals) {
	$ac_vals{$v->get_name()} = $v->get_data();
}

Beneath these subkeys, the value names appear as 0000, 0001,
0002, and so on. When displaying these values and their data, it
looks better when they appear in order, so to do that, we can use
code that appears as follows:

foreach my $a (sort {$a <=> $b} keys %ac_vals) {
	::rptMsg("\t".$a." -> ".$ac_vals{$a});
}

The code on the “foreach” line essentially tells Perl to sort the
keys of the Perl hash (%ac_vals), listing them with the smallest
value first. Each entry is printed with the Registry value name,
and arrow (“→”) and the value data, on one line.
When it comes to providing output, particularly for report-

ing, there are a number of different techniques you can use. For
example, you can simply build a string like we did above with
the values within the quotes or you can make them a bit more
descriptive. If you have data that is easier to understand if it’s
formatted neatly or in a particular manner, you can use Perl’s

78   Chapter 2  TOOLS

built-in sprint() function to provide that formatting. There are a
variety of ways to format the data, and it’s best to choose which
one makes the most sense for what you’re trying to achieve.

Plug-ins can be written as in a simple or complex manner as
you need. I know of some who have written plug-ins to extract
log-in banner information, and others who’ve written plug-ins
to extract information about a particular software package found
during a number of data breach investigations. If I find the need
to correlate information from multiple Registry keys, I sometimes
find it best to just perform that correlation in the plug-in rather
than extract the data from the various keys and then perform the
correlation and analysis later. Regardless of the approach, there
are a number of plug-ins available (on the accompanying CD),
which can be used as examples in creating your own plug-ins.

Toolkits
Overall, RegRipper and its associated tools (rip.pl, ripxp.pl) have
proven to be extremely useful and every effective. Since the tools
were released in 2008, I’ve received comments from folks who’ve
used the tools, saying such things as the tools have reduced days
or weeks worth of work to mere minutes. In fact, the tools have
become popular enough to be included in other toolkits. For
example, the Revealer Toolkit [20] includes the RVT_regripper
plug-in (written by Jose Navarro, a.k.a Dervitx) within its frame-
work, which relies on rip.pl. RegRipper is included in the SANS
SIFT (SANS Investigative Forensic Toolkit) Workstation distribution
[21] and in the PlainSight [22] open-source forensic environment.

RegRipper has proven useful enough that others have put
forth the effort to get it installed into their platform of choice
or modify it to meet their needs. A post to the Grey Corner
blog [23] provides instructions on how to install RegRipper on
Linux systems, specifically Ubuntu. Going back to the Windows
platforms, RegExtract [24] is based on RegRipper and provides
some additional functionality. Matt Churchill and Adam James
first modified RegRipper to run against mounted drives and then

Tip
Perl hashes can be very valuable when it comes to establishing uniqueness and reducing duplicates. In 1999, while
I was working at a consulting company, a friend gave me a little tidbit that I’ve used ever since. In a Perl hash, if you
make the items you’re interested in the key of the hash and set the value to 1 (that is, $hash{key} = 1), you will eliminate
duplicates because every time that key is encountered, no matter how many times, the value will always be 1.

Chapter 2  TOOLS   79

extended RegRipper and it’s plug-in-based approached to what
they refer to as “WindowsRipper” [25], providing a more compre-
hensive framework to analyzing acquired Windows images.

Regslack
In the spring of 2008, Jolanta Thomassen contacted me about
providing an idea (and being a sponsor) for her dissertation for
work at the University of Liverpool. I pointed her to an old (circa
2001) post on the Internet, asking about unallocated space within
a Registry hive file. Not long after, Jolanta produced regslack,
a Perl script that combs through a hive file and locates deleted
keys and unallocated space. If you remember from Chapter 1,
“Registry Analysis,” when a key is deleted, the first four bytes
(DWORD) of the key, which is the length of the key, is changed
from a negative value (as a signed integer) to a positive value. For
example, if the “live” key had a length of −120 as decimal value,
then the deleted key length is 120.
Regslack is a command-line tool and is very easy to use.

Simply open a command prompt and pass the path to the
Registry file in question to the program:

C:\tools>regslack.pl d:\cases\test\software

Regslack sends its output to the console (that is, STDOUT), so
be sure to redirect it to a file (that is, “. file”), as in some cases
there can be quite a lot of information. Regslack has proven quite
useful during a number of examinations. For example, if you find
indications of a user account being active on a system, but can’t
find that account listed in the SAM hive, try running regslack
against the hive file. In one instance, I found indications of a user
account with the name “Owner” and a RID of 1003 in the Event
Logs on the system, but no indication of such an account within
the SAM hive. Running regslack, I found the following:

SAM\SAM\Domains\Account\Users\Names\Owner
Offset: 0x3c70 [Fri Jun 18 17:03:22 2004]

SAM\SAM\Domains\Account\Users\000003EB
Offset: 0x3d08 [Fri Jun 18 18:59:27 2004]

The second key (Users\000003EB) had two values (F and V)
associated with it, just as you’d expect for a local user account.
The V value included the name “Owner.” Thanks to regslack, I’d
found the user account, as well as the time when the account
had been deleted. With a little more work, using Perl code that
I’ve already written (as part of RegRipper), I could extract and
translate that binary data from those values into something a bit
more understandable.

80   Chapter 2  TOOLS

I have also used regslack to great effect to recover deleted
keys and values from a user’s hive file, in particular after the
user had run an application called Window Washer on their sys-
tem. I researched the version of the application and found that it
reportedly did delete certain keys when run. Sure enough, the key
was not visible in the allocated (or “live”) space within the hive
file, but it was fairly easy to recover using regslack. There were
indications that Window Washer had been run several times, so I
suggested to the customer that we extract the user hive files from
the System Restore Points and see if we could find anything of
value within them.
During another incident, I had run searches for sensitive data

and received several hits within two hive files. Closer examina-
tion of those hits, and the hive files, revealed that the hits were
not “in” the hive files, in that they were not contained in keys or
values, rather they were within unallocated space in the hive files.
It turned out the hits were part of the hive files as a result of file
initialization issues, as described by Eoghan Casey at cmdLabs
(found on the Web site http://blog.cmdlabs.com/?p=157).
As of version 0.51, the Parse::Win32Registry module also has

the ability to extract deleted keys and values from within a hive
file. One of the scripts that James provided with the distribution
of the module, regscan.pl, includes code that references checking
whether a found entry is allocated (that is, $entry->is_allocated).
Modifying the code slightly to skip over and not display allocated
entries allows us to see just the deleted keys and values. The doc-
umentation that James has provided for the module includes a
section on lower level methods for processing hive files and refers
to the entry object methods that allow for a lower level of access
to entries within the hive file. This can allow us to walk through a
hive file and locate deleted keys and values.

Summary
There are a number of very useful tools and techniques available
for extracting data from Registry hive files during both “live”
(interacting with a live system) and “forensic” (interacting with

Tip
Jolanta’s dissertation is available online at the SentinelChicken Web site http://sentinelchicken.com/data/
JolantaThomassenDISSERTATION.pdf.

Chapter 2  TOOLS   81

hive files extracted from a system or acquired image) analysis.
The tools or techniques you employ depend on how you engage
and interact with the Registry, as well as the goals of your inter-
action and analysis. You can opt to use a viewer application,
such as RegRipper that extracts and parses specific keys and val-
ues based on plug-ins or regslack that parses unallocated space
within a hive file. In my opinion, tools such as those discussed in
this chapter have the advantages of not only being freely avail-
able but the open-source tools I’ve written and provided were
written by someone actively involved in a wide range of analysis;
I’ve not only been engaged in data breach investigations (most
commonly associated with the theft or exposure of credit card
data), but I’ve analyzed malware outbreaks, intrusions (includ-
ing those associated with the advanced persistent threat, or
APT), and I’ve assisted law enforcement in dealing with poten-
tial “Trojan defense” issues. As I mentioned in this chapter,
the RegRipper suite of tools (which includes the rip.pl and the
Plugin Browser) was developed to meet and service my needs
and the needs of my analysis. These tools were not developed
in a manner that resulted in having to modify my analysis to
meet the needs or limitations of the tools. Ultimately, the goal
has always been to provide my customers with timely accurate
results, and the tools discussed in this chapter have helped me
deliver on this.
Regardless of which approach is taken, as described in

Chapter 1, “Registry Analysis,” your actions and analysis should
be thoroughly documented in a clear, concise manner.

Frequently Asked Questions
Q:	 Under what circumstances should I use Regshot?
A:	� Regshot, and any snapshot-based tool like it, is best used when
you simply want to know the changes that occur to the Registry as
the result of a single atomic action. Due to background processes,
no action is truly “atomic” (that is, nothing occurs on a Windows
system completely in the absence of another action), but tools
like Regshot allow you to make snapshots before and after a sin-
gle action and then compare the two. Situations that benefit from
this sort of tool include launching malware, installing or upgrading
tools or applications, and so on.

Q:	� What are some of the differences between “live” and “forensic”
analysis?

A:	� First, “live” analysis is performed when the system is still running;
the live Registry can be queried, data extracted, correlated, and
interpreted. However, the data that you have access to varies from

82   Chapter 2  TOOLS

that of “forensic” analysis, which for our purposes involves extract-
ing the raw hive files themselves, either from a live system (via
FTK Imager, F-Response, or some other means) or from an image
acquired from a system. When interacting with a live system, you’re
subject to the privileges of the user account you’re using and the
access control lists (ACLs) on various portions of the Registry, in
particular the SAM hive. When performing forensic analysis, you
can access the raw data in the hive files without worrying about
permissions and privileges. A benefit of live analysis is that you
have access to volatile data that does not exist when performing
forensic analysis.

Q:	 What is the best tool to use for Registry analysis?
A:	� The question of “best” generally takes us back to the goals of our
analysis. I tend to choose tools best suited to my needs and rec-
ognize that not all tools are useful in all cases. Obviously, I prefer
RegRipper and its associated tools, as I wrote those tools out of
necessity and in an attempt to solve the challenges I faced during
my own analysis. When I suspect that there may be value in
examining the contents of unallocated space within a hive file,
I will look to RegSlack. If I suspect that there may be keys or val-
ues for which I have yet to write a plug-in, I will open the hive file
in a viewer such as the one included in ProDiscover or I will use
the MiTeC Registry File Viewer. Many times, I will also use tools
to add data from the output of RegRipper to a timeline in order to
add context to that information. Overall, in my humble opinion,
the “best” tools for Registry analysis are the curiosity of the ana-
lyst and whatever method they use to document what they do
(that is, Forensic CaseNotes, Microsoft Word, Notepad, and so on).

References
	 [1]	 AutoRuns for Windows v10.02. Microsoft SysInternals site. http://technet

.microsoft.com/en-us/sysinternals/bb963902.aspx (accessed 22.07.10).
	 [2]	 Script Center Home Page. Microsoft. http://technet.microsoft.com/en-us/

scriptcenter/default.aspx.
	 [3]	 Registry key security and access rights. Microsoft. http://msdn.microsoft

.com/en-us/library/ms724878(VS.85).aspx.
	 [4]	 A. Schuster, Computer Forensic Blog. http://computer.forensikblog.de/en.
	 [5]	 Virus alert about the Win32/Conficker worm. Microsoft Support. http://

support.microsoft.com/kb/962007 (accessed 8.07.10).
	 [6]	 Browse regshot Files on Sourceforge.net. SourceForge.net. http://

sourceforge.net/projects/regshot/files.
	 [7]	 Process Monitor v2.92. Microsoft SysInternals. http://technet.microsoft

.com/en-us/sysinternals/bb896645.aspx.
	 [8]	 How to debug Windows Services. Microsoft Support. http://support

.microsoft.com/kb/824344 (accessed 2.07.10).
	 [9]	 How to turn off Windows Update feature in Windows XP. Microsoft Support.

http://support.microsoft.com/kb/892894 (accessed 25.01.10).

Chapter 2  TOOLS   83

	[10]	 AccessData Product Downloads. http://www.accessdata.com/downloads
.html.

	[11]	 Technology Pathways – Computer Forensics, Digital Discovery, Auditing,
Incident Response. http://www.techpathways.com/DesktopDefault
.aspx?tabindex=3&tabid=12.

	[12]	 Tools and utilities for Windows. ImDisk Virtual Disk Driver. http://www
.ltr-data.se/opencode.html#ImDisk.

	[13]	 ASR Data – Smart Mount. http://www.asrdata.com/SmartMount.
	[14]	 Binary Intelligence: Run RegRipper against a mounted drive. http://www

.binint.com/2010/05/run-regripper-against-mounted-drive.html (accessed
14.05.10).

	[15]	 NSSA Documentation: RegRipper, RegView, and Bluetooth Registry Settings.
Blog post, 7 Oct 2008, http://nssadoc.blogspot.com/2008/10/regripper-
regview-and-bluetooth.html.

	[16]	 Security Ripcord >> Scripts and Tools. http://www.cutawaysecurity.com/
blog/scripts-and-tools.

	[17]	 Open Perl IDE. http://open-perl-ide.sourceforge.net.
	[18]	 EPIC – Eclipse Perl Integration. http://www.epic-ide.org.
	[19]	 Padre, the Perl IDE. http://padre.perlide.org.
	[20]	 Revealer Toolkit. Google Code. http://code.google.com/p/revealertoolkit.
	[21]	 SANS Computer Forensics Community. SANS Portal. https://computer-

forensics2.sans.org/community/siftkit.
	[22]	 PlainSight. http://www.plainsight.info.
	[23]	 The Grey Corner: Running RegRipper on Linux. http://grey-corner.blogspot

.com/2010/04/running-regripper-on-linux.html (accessed 25.04.10).
	[24]	 RegExtract: woanware. http://www.woany.co.uk/regextract.
	[25]	 Turning RegRipper into WindowsRipper. MattChurchill.net blog, 1 Jun 2010,

http://mattchurchill.net/2010/06/windowsripper.

This page intentionally left blank

85Windows Registry Forensics. DOI: 10.1016/B978-1-59749-580-6.00003-6
© 2011 Elsevier Inc. All rights reserved.

3
Information In This Chapter
•	 Security and SAM Hives
•	 System Hive
•	 Software Hive
•	 BCD Hive

Case Studies: The System

Introduction
When I sat down to write this book, I was aware that for most
folks, providing spreadsheets, tables, and lists of Registry keys
and values would not be an entirely effective means of com-
municating and sharing information about Registry analysis. In
fact, after writing the first edition of Windows Forensic Analysis
(Syngress Publishing, published in 2007, a.k.a., WFA), it was
pretty clear to me that listing Registry keys and files wasn’t as
effective as providing examples of Registry analysis, and of how
all of these could be used together. When I began writing the
second edition of WFA, I specifically included a chapter on just
“case studies,” in hopes of demonstrating how I and others have
used various data sources from a Windows system, in incident
response and forensic analysis scenarios, to gather information
and build an overall picture to solve the challenges we were fac-
ing. Talking with others, I can see how this can be an effective
approach … leaving someone with stacks of lumber and roof-
ing shingles and some tools and nails does not help his or her
build a house. However, showing someone how a house can be
built, with some of the various places where modifications can
be made, is more of a “teach a man to fish” approach, and it can
lead to more involvement in Registry analysis, in particular, and
Windows forensic analysis as a whole.

86   Chapter 3  Case Studies: The System

In short, this chapter (and the one after it) will not be a
comprehensive list of all possible Registry keys and values
that would be of interest to an analyst, mapped against vari-
ous types of examinations. Rather, we will take a look at some
use cases, as well as some scenarios that I and others have
run across, and problems that we’ve encountered and solved.
My overall goal is to demonstrate how easily data from the
Registry can be extracted, and how it can be used to further an
examination.

Security and SAM Hives
The first hives we’ll look at are the Security and SAM hives, in
part, because they have perhaps the least amount of data avail-
able (“pound for pound,” so to speak) compared with the System
and Software hives. These hives contain some useful informa-
tion, and there’s no question that what they can provide can be
extremely valuable during an examination, but the data in the
other two hives, in my experience, is both considerably more
expansive and fluid.

Data from the Security Hive
At the time of this writing, I am aware of little data that might
be relevant to an examination that has been discussed publicly;
however, there are a few keys and values that are of interest. One
such Registry key is “PolAcDms,” which was mentioned in the
Wikipedia page on security identifiers [1]. The “Default” value
within this key contains the security identifier (SID) for the sys-
tem (or “machine”), which is a unique name that identifies an
object, and in this case, the system. As we will address later in
this chapter, this information can be used to determine which
users on a system are local users, and which users are domain
users, which is something that can be very useful with respect to
a domain-connected (as opposed to standalone) system and, in
particular, a system with multiple domain trusts. Parsing the SID
from the binary data is not an arduous task, and is included in
the RegRipper polacdms.pl plug-in, the output of which (when
run against a Security hive extracted from a Vista system) is
shown as follows:

Launching polacdms v.20100531
PolAcDmS
Policy\PolAcDmS
LastWrite Time Fri Aug 31 15:14:53 2007 (UTC)

Chapter 3  Case Studies: The System   87

Machine SID: S-1-5-21-3831915772-716441274-3601324335
PolPrDmS
Policy\PolPrDmS
LastWrite Time Thu Nov 2 12:48:01 2006 (UTC)
Primary Domain SID: S-1-5-

Not only does this plug-in extract and parse the machine
SID from the PolAcDmS key, but it also extracts and parses the
domain SID (for the domain to which the system was connected)
from the PolPrDmS key. In this example, the Security hive was
extracted from a standalone system used by a home user. In
instances where the system was connected to a domain, the pri-
mary domain SID can be parsed from the “Default” value of that
key, and it will be visible following “Primary Domain SID:”. Later
in this chapter, we’ll discuss local user accounts found in the
SAM hive, as well as the ProfileList key from the Software hive,
and see how an analyst can use this information.
The other key that is of use and interest to analysts from

the Security hive is the “PolAdtEv” key. Parsing the binary data
retrieved from this value is not a trivial task. However, our under-
standing of how this data can be parsed and understood can be
helped along with Microsoft (MS) KnowledgeBase (KB) article
246120 [2]. As stated, this article applies to Windows NT 4.0, and
there are only seven areas of auditing listed in the article. However,
Windows XP has nine areas of auditing, as illustrated in Figure 3.1.

Figure 3.1 A udit Policy through
Local Security Settings
(Windows XP)

88   Chapter 3  Case Studies: The System

In order to view the information illustrated in Figure 3.1, all
we need to do is open the Administrative Tools Control Panel
applet and select the Local Security Policy shortcut. Another way
to view this information (one that is useful during live response,
as it can be added to a batch file) is to run auditpol.exe; running
it on that same live system, the following can be observed:

D:\tools>auditpol

Running ...

(X) Audit Enabled
System = No
Logon = No
Object Access = No
Privilege Use = Success and Failure
Process Tracking = No
Policy Change = No
Account Management = No
Directory Service Access = No
Account Logon = No

Okay, so that’s how we can extract the information from a live
system, but what about from an acquired image? Using MS KB
article 246120 as a basis and toggling various settings on and
off, we can see what modifications affect which areas of the
data, and develop an extrapolation of the data to our Windows
XP system. Or, the RegRipper plug-in auditpol.pl can be used
to extract and parse the necessary information, either as part of
a plug-ins file or run individually through rip.pl (or rip.exe), as
shown below:

Launching auditpol v.20080327
auditpol
Policy\PolAdtEv
LastWrite Time Mon Jul 12 18:09:46 2010 (UTC)

Auditing is enabled.
 Audit System Events = N
 Audit Logon Events = N
 Audit Object Access = N
 Audit Privilege Use = S/F
 Audit Process Tracking = N
 Audit Policy Change = N
 Audit Account Management = N
 Audit Dir Service Access = N
 Audit Account Logon Events = N

This information can be very valuable as it tells us a lot about
the state of auditing on the system at the time that an image was

Chapter 3  Case Studies: The System   89

acquired. First, the LastWrite time of the key lets us know when
the settings were last modified (the time is listed in Universal
Coordinated Time, or UTC). This can be very helpful in under-
standing why we see, or don’t see, certain events in the Event
Log, as well as provide an indication of when the audit policy was
changed. There’ve been a number of examinations where I’ve
created a time line and seen clearly when the incident occurred,
and seen that as a result of response and remediation actions
taken by local IT staff, antivirus scans have been run and the
audit policy has been updated, just before an image was acquired
from the system.
Next, we see whether or not auditing is enabled, and if so,

which events are audited. This will also provide us with some
indication of what we can expect to see in the Event Log. For
example, if auditing of successful logon events isn’t enabled,
then we wouldn’t expect to be able to see when someone logged
into the system using a user account, either legitimately or as a
result of compromised credentials. I have used this informa-
tion during examinations quite extensively; during one instance,
I used the fact that auditing for both successful logins and failed
log-in attempts were both enabled, but there were no indications
of remote logins through the Remote Desktop Protocol (RDP),
to further illustrate that a particular user account had been
accessed locally and used to view illegal images.
It is important to note that while this key and value exist on

Windows Vista and 7 systems, there has yet to be extensive test-
ing on these systems. Figure 3.2 illustrates the audit policy on a
Windows 7 Ultimate system.
As you can see from Figure 3.2, there are nine areas of audit-

ing listed, just as there are with Windows XP. In fact, the audit
policies in Figures 3.1 and 3.2 look very similar. However, the
“Default” value for the PolAdtEv key on Windows XP contains
data that is 44 bytes long, whereas on available Windows Vista
and 2008 systems, the data is 136 bytes long, and 138 bytes on
available Windows 7 systems. So again, considerable testing

Tip
If successful, use of privilege events are being audited (i.e., Audit Privilege Use = S) on a Windows XP system, and a
user modifies the system time through the “Date and Time” Control Panel applet (this can also be done by right-clicking
on the time display on the Task Bar and choosing “Adjust Date/Time”), an event ID 577 appears in the Security Event
Log, indicating the use of the “SeSystemtimePrivilege” privilege.

90   Chapter 3  Case Studies: The System

needs to be performed in order to create a version of the audit-
pol.pl plug-in that works for Vista, as well as Windows 2008 and
Windows 7.

User Information from the SAM Hive
Most administrators and analysts are aware that information
about local users on a system is maintained in the SAM “database”
or hive file. In corporate environments, the SAM hive may not have
a great deal of useful information, but for environments where the
users will access systems using local accounts (home users, lap-
tops, and so on), this hive file can provide a great deal of valuable
data. We’ll also see, later in this chapter, how the SAM hive can be
used in other ways.

Tip
Although information about user accounts local to the system are maintained in the SAM hive, the Software hive
contains the ProfileList key (HKLM\Software\Microsoft\Windows NT\CurrentVersion\ProfileList), which is a list of all the
profiles on the system. This can show you remote or domain users who have logged into the system. We will discuss
the ProfileList key later in this chapter.

Figure 3.2 A udit Policy on a Windows 7 Ultimate System

Chapter 3  Case Studies: The System   91

The samparse.pl plug-in extracts both user and group infor-
mation from the SAM hive. Most of the information specific
to each user is available beneath the SAM\Domains\Account\
Users\RID key for each user, where RID is four zeros followed
by the user’s relative identifier (RID) in hexadecimal format.
For example, the Administrator account has an RID of 500,
which would appear as 000001F4 in the SAM, as illustrated in
Figure 3.3.
The key for each user contains at least two values, F (contains

several time stamps, and so on) and V (contains user name,
comment, and so on), which are binary data types and contain
information about the user account. I have relied heavily on
the source code for Peter Nordahl–Hagen’s ntpasswd utility [3]
to understand and decode this data into something usable.
Sometimes within the user’s key, you will also find a value name

Figure 3.3 W indows XP SAM Keys through RFV

92   Chapter 3  Case Studies: The System

“UserPasswordHint,” which contains a string value if a user has
entered a password hint.
An excerpt of the user information extracted from the F and

V values in the SAM hive by the samparse.pl RegRipper plug-in
appears as follows:

User Information

Username : Administrator [500]
Full Name :
User Comment : Built-in account for administering the
computer/domain

Account Created : Tue Sep 11 14:26:13 2007 Z
Last Login Date : Fri Aug 31 15:52:42 2007 Z
Pwd Reset Date : Thu Nov 2 13:09:52 2006 Z
Pwd Fail Date : Never
Login Count : 4
 --> Password does not expire
 --> Account Disabled
 --> Normal user account

Username : Guest [501]
Full Name :
User Comment : Built-in account for guest access to the
computer/domain

Account Created : Tue Sep 11 14:26:13 2007 Z
Last Login Date : Never
Pwd Reset Date : Never
Pwd Fail Date : Never
Login Count : 0
 --> Password does not expire
 --> Account Disabled
 --> Password not required
 --> Normal user account

Username : Harlan [1000]
Full Name :
User Comment :
Account Created : Tue Sep 11 14:26:01 2007 Z
Password Hint : usual plus a bit more
Last Login Date : Mon Jan 12 12:41:35 2009 Z
Pwd Reset Date : Tue Sep 11 14:26:02 2007 Z
Pwd Fail Date : Fri Jul 11 19:54:07 2008 Z
Login Count : 16
 --> Password does not expire
 --> Password not required
 --> Normal user account

As you can see, a great deal of information is available in
the user’s keys within the SAM. This information can be used

Chapter 3  Case Studies: The System   93

to demonstrate activity on the system (i.e., Last Login Date,
Login Count values) for a specific user account, as well as tell
you a number of other things, such as if the Guest account has
been enabled and used. Another tell-tale sign of unusual activ-
ity would be if accounts such as the support or HelpAssistant
accounts have been enabled.
Note that in the output excerpt above, the “Harlan” user

account has an extra field that the other two do not; specifically,
“Password Hint.” Many Windows systems (including Windows XP)
allow the option to add a password hint to the user account, as
illustrated in Figure 3.4.

Figure 3.4 A dd a Password Hint to a Windows 7 User Account

Tip
Of particular note in the output of the samparse.pl plug-in is the entry for “Password not required.” In some cases,
analysts have taken this flag value to mean that the account does not have a password, and that is not the case.
Rather, it means that password policies (length, complexity, and so on) applied to the user accounts on the system do
not apply to those accounts for which the “Password not required” flag is set. I had posed the question to someone
knowledgeable in this area, and had been informed, “That specifies that the password-length and complexity policy
settings do not apply to this user. If you do not set a password, then you should be able to enable the account and
logon with just the user account. If you set a password for the account, then you will need to provide that password at
logon. Setting this flag on an existing account with a password does not allow you to logon to the account without the
password.” This is somewhat supported by MS KB article 305144  [4], which indicates that enabling the flag means that
a password is not required.

94   Chapter 3  Case Studies: The System

There have been several cases where a somewhat careless user
has added something odd to his or her password hint, and it has
turned out to be the user’s password!

The Case of the Disappearing User Account
I was examining an image sent to me, looking for indications of
malicious activity. As is often the case, I neither had a really good
idea of the specific activity of interest, nor of the time frame in ques-
tion. I had created a time line of activity on the system, using the
file system metadata, Prefetch file metadata, Event Log record data,
and so on, as sources, and had started to see some unusual activity.
In one instance, I found that a particular user account had logged in
about a year before the image had been acquired, but I didn’t find
any indication of that user account in the SAM. I used regslack.exe
to extract deleted keys and values, and unallocated space from the
SAM hive, and found an account with the same RID as the account
I was interested in, but in the deleted data, the key had a different
user name associated with it. I also noted that the LastWrite time on
the deleted key was very close to the time that the image of the sys-
tem had been acquired. As it turned out, a system administrator had
logged into the system, changed the name on the account when he
or she heard that “someone was coming to acquire the system,” and
then deleted the account. This was confirmed by that same system
administrator.

The samparse.pl plug-in will also extract information about
local groups from the SAM hive, including the group name, com-
ment, and the SIDs for the users in the group. An excerpt of this
output from a Windows XP system is illustrated below:

Group Name : Users [4]
LastWrite : Thu Sep 13 12:35:14 2007 Z
Group Comment : Users are prevented from making accidental
or intentional system-wide changes. Thus, Users can run
certified applications, but not most legacy applications

Users :
 S-1-5-4
 S-1-5-21-2096504233-719092796-1279470122-513
 S-1-5-11
 S-1-5-21-11123406-2312686674-711150868-1003

Group Name : Guests [1]
LastWrite : Fri Jan 19 00:58:18 2007 Z
Group Comment : Guests have the same access as members of the
Users group by default, except for the Guest account which
is further restricted

Users :
 S-1-5-21-11123406-2312686674-711150868-501

Chapter 3  Case Studies: The System   95

Group Name : Remote Desktop Users [0]
LastWrite : Mon Apr 4 18:34:48 2005 Z
Group Comment : Members in this group are granted the right
to logon remotely

Users : None

Group Name : Administrators [6]
LastWrite : Thu Sep 13 12:35:14 2007 Z
Group Comment : Administrators have complete and unrestricted
access to the computer/domain

Users :
 S-1-5-21-11123406-2312686674-711150868-500
 S-1-5-21-2096504233-719092796-1279470122-512
 S-1-5-21-2096504233-719092796-1279470122-2003
 S-1-5-21-11123406-2312686674-711150868-1016
 S-1-5-21-2096504233-719092796-1279470122-3560
 S-1-5-21-2096504233-719092796-1279470122-37504

As you can see from the sample output from the samparse.pl
plug-in, there are a number of users (both local and domain
users) in the Administrators group, while other groups (i.e.,
Guests) have few users, and still others (i.e., Remote Users)
have none. This information can be very helpful in determining
the level of access that a particular user account had on a sys-
tem at the time that system was acquired, in order to determine
what actions that user could take on the system, such as sub-
mit Scheduled Tasks (which is one way that a user could obtain
elevated privileges), and so on.
Also, the samparse.pl plug-in is very convenient as it allows

you to obtain and view a great deal of local user and group infor-
mation from a system, all in one easy-to-reference location.

Cracking User Passwords
There are a number of times during investigations when you
would want to determine a user’s password. For example, in a
number of examinations, law enforcement officials have wanted
to know if the user account had a password at all. In most
instances, I have seen this sort of query associated with cases
where something suspicious (or illegal) is associated with the
user account of another family member, and law enforcement
officials want to determine if the suspect had free access to that
account; an account with no password is extremely vulnerable. In
other cases, the “Password not required” flag in the user account
settings (mentioned earlier in this chapter) can be very confus-
ing to some analysts, and determining if the user account had a
password at all, and attempting to determine what that password
is, is paramount to the investigation. Finally, there may be a time

96   Chapter 3  Case Studies: The System

during an investigation where, after you’ve acquired an image of
the system, you may want to boot the system (either the original
system or the acquired image, which can be “booted” in a virtual
environment through LiveView [5], in order to “see” what the user
saw or had access to while he or she had logged into the system.
In order to crack the passwords, the first thing we need to do

is to get the hashes. In order to do so, extract the SAM and System
hives from the acquired image to a suitable location (as part of
my case management, I tend to create specific subdirectories
beneath my main case directory just for this purpose). There are
a couple of ways to go about obtaining the hashes from these two
files (the System hive is required as the passwords are protected
with an additional layer of encryption called “SysKey” [6]). To get
the hashes, you can use either pwdump7 [7] or Cain [8].
To obtain the password hashes using pwdump7, download and

extract the tool files, and then open a command prompt to the
directory where the tool is located. It is important to note that run-
ning pwdump7 with no arguments will extract the password hashes
from your analysis system; this is generally not a “good thing.” In
order to get the password hashes from the System and SAM hive
files you extracted from an acquired image, use the “–s” switch:

D:\tools>pwdump7 –s <sam_hive> <system_hive>

Note that the order of the arguments in the command is
important. Also important is to ensure that you use the full and
correct paths to the hive files, even if they are located in the same
directory as pwdump7.exe, as the program does not prepend the
arguments with the path of the current working directory. Not
only do you need to do this so that the program knows where
the files are located and can open them, but also to ensure that
you’re using the SAM and System hive files from the same case;
mixing the two (using a SAM hive from one case and a System
hive from another case) generally results in something not
working properly, if at all.

Tip
There are two types of password hashes stored in the SAM database: LM (LAN Manager [9]) and NTLM (NT LAN
Manager [10]). However, administrators can prevent LM hashes from being stored in the Active Directory and local SAM
databases [11], as the LM hash has long been known to be relatively weak in comparison with the NTLM hash and is
prone to fast brute force attacks in decrypting them. On Windows XP and 2003 systems, setting the NoLMHash value to
1, or creating a password longer than 15 characters, disables storing of the LM hash.

Chapter 3  Case Studies: The System   97

Using the SAM and System hive files from a test case (the
“hacking case” available from NIST [12]), we run the following
command:

D:\tools>pwdump7 -s d:\case\sam d:\case\system

This gives us the following output (excerpt):

Administrator:500:NO
PASSWORD***********:31D6CFE0D16AE931B73C59D7E0C089C0:::
Mr. Evil:1003:NO
PASSWORD***********:31D6CFE0D16AE931B73C59D7E0C089C0:::

In this example, I’ve removed a couple of the user accounts
and only illustrated the ones of most interest to us in this case. As
you can see, the output includes the user name, relative identi-
fier (RID), LM hash, and the NTLM hash. This format allows us
to easily import these hashes into password-cracking tools; how-
ever, as shown in the excerpt, neither of the two accounts has a
password. This simple tool can provide a great deal of valuable
information to the analyst, particularly, in cases where knowing
whether or not an account has a password is pertinent.
There are also a number of free, GUI-based password-cracking

tools available, such as Cain & Abel, OphCrack [14], and John
the Ripper. There are also for-fee tools such as SAMInside [15],
for which there is a limited demo version available. For the “old
timers” in the information security industry, L0phtCrack version
6 [16] is also available for a fee, and with a 15-day trial period. It
isn’t necessary to go through all of these tools, as this is beyond
the scope of the book, and the programs are quite easy to use;
instead, we’ll just take a look at how to use Cain & Abel and
OphCrack.
To use Cain (we won’t be using the “Abel” functionality), down-

load, install, and launch the program. From the Tools menu, select
the Syskey Decoder entry, as illustrated in Figure 3.5.

Tip
Booting an image through LiveView (see the appropriate sidebar later in this chapter) can let you verify the finding that a
user account has no password. With respect to the NIST hacking case, booting the image in a virtual machine causes it
to log directly into the Mr. Evil user account. This is controlled by the DefaultUserName value in the WinLogon key, per
MS KB article 315231  [13]. In this case, the user account has no password, so there is no DefaultPassword value listed
in the Registry. If there were, it would be in plain text, which is why the MS KB article states several times that when
using these values, the system itself should be physically secure.

98   Chapter 3  Case Studies: The System

When the Syskey Decoder dialog appears, select the button
with the three dots in the “Boot Key (HEX)” box and navigate to
the System hive that you extracted from the image. Once the file
is selected, click Open in the Open dialog, and the “boot key” will
appear in the text field, as illustrated in Figure 3.6.
Selected the boot key and hit Ctrl-C, copying the boot key to

the clipboard, and then click the Exit key in the Syskey Decoder
dialog. Next, in the main Cain window, click the Cracker tab, and
then highlight “LM & NTLM Hashes” in the left-hand pane, as
illustrated in Figure 3.7.
Now, click the blue plus sign that is located directly above the

Sniffer tab. If the plus sign is grayed out, try clicking on NTLMv2

Figure 3.5  Selecting Syskey Decoder In Cain Tools Menu

Figure 3.6  Boot Key Selected

Chapter 3  Case Studies: The System   99

Hashes entry in the left-hand pane, and then back on the LM &
NTLM Hashes entry. In the “Add NT hashes from” dialog, click
the Import hashes from a SAM database radio button, and
then paste the boot key (from the clipboard) into the “Boot Key”
text field. Click the button with the three dots next to the “SAM
Filename” text field and navigate to the SAM hive, as illustrated in
Figure 3.8.
Click on Next in the “Add NT Hashes from” dialog, and the

Cracker pane in Cain gets populated with the LM and NTLM
hashes for each user account, as illustrated in Figure 3.9.

Figure 3.7  Cain Cracker Tab Selected

Figure 3.9  Hashes Populating Cracker Pane

Figure 3.8  “Add NT Hashes from” Dialog in Cain

100   Chapter 3  Case Studies: The System

We used the same SAM and System hive files as we used with
the pwdump7.exe example previously in this chapter, so it should
be no surprise that the LM Passwords for the Administrator and
Mr. Evil user accounts are listed as “*empty*”. In fact, this is excel-
lent validation of our previous findings.
At this point, in order to attempt to crack the password for

an account, right-click on a user account, and select the type of
password-cracking attack you would like to use, as illustrated in
Figure 3.10.
Installing OphCrack (version 3.3.1 at the time of this writing)

is a bit different and perhaps a bit more involved than using Cain.
Download and install the application, and then be sure to follow
the application instructions for downloading and installing the
necessary rainbow tables (also available from the Sourceforge.net
site; other tables can also be found elsewhere on the Internet).
For the purposes of this example, the “XP Free Fast” tables were
installed.
To begin, open OphCrack and click the Load button, and then

select the Encrypted SAM option, as illustrated in Figure 3.11.
When the Browse for Folder dialog appears, navigate to the

directory where the SAM and System hives that you extracted
from your acquired image are located. Once you’ve selected the
directory and clicked OK, the Progress tab will be populated with
the password hashes, as illustrated in Figure 3.12.
As you can see, the NTLM hashes for the Administrator and

Mr. Evil user accounts are also listed as “empty” by OphCrack.

Figure 3.10  Selecting a Password-Cracking Attack

Chapter 3  Case Studies: The System   101

At this point, if we had user accounts with passwords, and we
wanted to attempt to crack them, all we’d need to do is click the
Crack button (see Figure 3.12).
Again, a detailed discussion of password-cracking attacks or

of the Cain or OphCrack applications is beyond the scope of this
book. My purpose in providing the information about the tools
in this chapter has been to illustrate how freeware tools can be
used to derive (and validate) information from Registry hive
files; in this case, to illustrate information about user accounts
extracted from the SAM database, and to validate whether or not

Figure 3.12  Password Hashes In OphCrack Progress Tab

Figure 3.11  OphCrack, Load Encrypted SAM Option

102   Chapter 3  Case Studies: The System

a user account actually has a password associated with it that
needs to be typed in by a user. As I mentioned earlier, simply
determining whether or not an account has a password has been
a very important part of a number of examinations.

Booting an acquired image with LiveView
Sometimes during an examination, you may want to “see” what the user
saw when they logged into the system. However, if all that is available
to you is an acquired image, how can you do this? Well, you can use
LiveView to boot the acquired image, but you would still need valid user
credentials to log into the system. So, what do you do if you don’t have
valid credentials for a user account on the system? Actually, it’s not all
that hard … you just have to be quick.
Before we begin, make sure that you’ve made a copy of the acquired

image … if something should go wrong, we don’t want to lose our only
source of data. Start by first downloading LiveView, and then download-
ing the bootable CD release of Peter Nordahl–Hagen’s ntpasswd utility.
As of this writing, the file you’re looking for is named “cd100627.zip”;
download this file and extract the ISO file from the archive. Follow the
LiveView instructions for creating a bootable virtual machine (VM) from
the acquired image, and then point the CD player in the VM to the ISO
image of the ntpasswd utility. Start the VM, and as the system boots, hit F12
to interrupt the boot sequence. This may take a couple of attempts … the
first time I tried it, I didn’t successfully access the BIOS until the fourth
attempt. Once you do interrupt the boot sequence and access the BIOS,
tell the BIOS to boot off of the CD first, save the settings and reboot the
system. When it comes back up, follow the ntpasswd utility prompts and
change the Administrator password. Once you’ve successfully changed
the password, shut the system down, disconnect the CD player in the
VM from the ISO, and reboot the system. At this point, you should be
able to log into the system with no trouble.

System Hive
So far in our discussion, we’ve touched a very little bit on how the
System hive can be useful, specifically with respect to extracting
password hashes from a SAM hive, in order to determine whether
or not a user account has a password, and to attempt to crack it if
it does. However, the System hive contains a great deal of config-
uration information about the system and devices that have been
attached to it, so let’s take a look at how to derive and interpret
some of that data.
Throughout this section, as well as the rest of this chapter, I’m

going to be presenting and discussing Registry keys and values
that are most often seen, viewed, and accessed during incidents,
and subsequently, during analysis. Neither this chapter nor this

Chapter 3  Case Studies: The System   103

book is intended to be an all-inclusive listing of Registry keys,
as that would be impossible and quite boring. Rather, I’d like to
offer up some insight into specific keys and values, and how what
you find (or, in some cases, don’t find) can be used to further your
examination.

CurrentControlSet
We know that there are portions of the Registry that are volatile,
in that they only exist when the system is running. One such
key is the CurrentControlSet key in the System hive. Microsoft
states that a ControlSet, “contains system configuration infor-
mation, such as device drivers and services” [17]. When we
access the Registry on a live system, we may see two (or more)
ControlSet keys (as illustrated in Figure 3.13) in addition to the
CurrentControlSet key.
During a postmortem examination, we may need to deter-

mine which ControlSet was loaded as the CurrentControlSet
when the system was running. In order to do so, all we need to
do is view the values within the Select key in the System hive, as
illustrated in Figure 3.14.

Figure 3.13  SYSTEM Hive through RegEdit, Showing the CurrentControlSet

Figure 3.14  Contents of Select Key in the System Hive

104   Chapter 3  Case Studies: The System

Within the Select key, the Current value tells us which
ControlSet was loaded as the CurrentControlSet when the system
was running. This helps us understand a bit about the system
state when it was running; for example, each ControlSet contains
a list of Services installed on the system and how they are set to
run (i.e., automatically at boot, disabled, and so on).

Services
Perhaps one of the most referenced and analyzed pieces of
information in the System hive, particularly during incident
response activities, is the Windows services. Windows services
(referred to in the Linux world as “daemons”) are programs that
run automatically when the system is booted, and are started
by the system and with no interaction from the user (however,
users with the appropriate privileges can install, start, and
stop services). Windows services can be very useful; Web and
FTP servers, as well as DNS and DHCP servers, are all Windows
services. However, the nature of Windows services (run auto-
matically within no user interaction, as well as with elevated
privileges) makes them a target for malware authors, as well, and
a great number of bits of malware install as Windows services.
Services on Windows systems can be extremely powerful;

they generally run with elevated privileges and start without any
interaction from the user beyond booting the system. Is there any
wonder why services are targeted so often by malware authors
and intruders? Not so much to exploit a vulnerability (yes, that
does happen), but instead to use Windows services as a persis-
tence mechanism, ensuring that the malware or backdoor or IRC
bot is started each time the system is booted.
In many cases, experienced incident responders will be able

to look at a system Registry and “magically” pick out the obscure
or malicious services. Some malware creates services with ran-
dom names, so a quick look at the Registry is all it takes to find

Note
Most of the RegRipper plug-ins that access the System hive will first check the “Current” value within the Select key,
and then extract information from the appropriate ControlSet, based on the value data. This is simply a matter of prefer-
ence and not a hard-and-fast requirement; plug-ins can be written to access all of the available ControlSets (I have seen
System hives with three ControlSets listed) and search for/extract the desired information from each one. This may be
useful for comparison, particularly, if the LastWrite times on the keys themselves differ.

Chapter 3  Case Studies: The System   105

the offending service. Another technique that used to be followed
by incident responders and analysts was to look for services that
did not have a Description value; many legitimate services have
descriptions, and some of them can be kind of long, depending
on the vendor. The bad guys learned from these techniques, and
began using services names that looked a bit more legitimate
and began filling in the various values to make the service itself
look more legitimate, at least when the values were seen through
a Registry viewer. For instance, there have been Description val-
ues that appear legitimate, and I have seen others that have had
some misspellings (i.e., “down load” spelled as two words) which
was enough for me to take a closer look.
Another value beneath a service key that can provide a good

deal of context and perspective to an examination is the Start
value. A description of the various Start values can be found
in MS KB article 103000 [18]. In most instances, you’d expect a
Start value of “0x02,” indicating that the service is autoloaded,
or run automatically. Every now and again, I see malware ser-
vices that have a Start value of 0x03, which indicates that they’re
set to start manually, meaning that a user must do something,
take some action, for the service to be started. This can be criti-
cal when attempting to determine the “window of compromise”
for a customer. Basically, if the malware service was installed
with a Start value of 0x03, started and run, and then the system
shut down, when the system was started again, the service would
not start automatically. This may play a significant role in your
examination.
RegRipper includes a number of plug-ins for extracting ser-

vice key information from the System hive, and to be honest,
because RegRipper is open-source, there’s really no limit to how
you present the information. Most of the plug-ins will start off
by locating the ControlSet00n marked “Current” in the Select

Warning
Creating services (and other actions, such as submitting Scheduled Tasks) on Windows systems requires Administrator-
level privileges; as such, the fact that new services had been created tells you something about the level of access
that the malware or the intruder had on the system. Analysts often see partial infections by malware, where the infec-
tion process was hindered by the fact that user context that was involved did not have Administrator privileges on the
system. So while limiting user privileges can prevent or hamper the effects of a compromise, the flip side is that the
artifacts of a compromise that you do find can tell you a lot about what may have happened.

106   Chapter 3  Case Studies: The System

key of the System hive; however, this is not a hard-and-fast
requirement. Plug-ins can be written that will display the same
key/value information from all of the available ControlSets, or
you can write a plug-in to display the information from both
ControlSets if the information itself is not the same in both (or
all … I’ve seen hives with more than two ControlSets) locations.
Some of the current plug-ins that retrieve service key information
include services.pl, svc.pl, and svc2.pl.
Not long ago, the bad guys were found to be using an even

trickier technique to hide and maintain the persistence of their
malware or backdoors. Instead of creating a service with an
ImagePath value that pointed directly to the malware execut-
able file, they were creating a service that was loaded by the
venerable svchost.exe process. Svchost.exe [19] is essentially a
“service host,” in that multiple copies of svchost.exe can be run-
ning, each “hosting” multiple services running from DLLs. When
the svchost.exe process starts, it reads through the Registry to see
which services it needs to be running, under which instances.

Warning
I was performing emergency incident response for an organization that had some issues with malware. The malware
wasn’t wide-spread, and didn’t seem to be infecting systems; in fact, all indications were that the malware was isolated
to just a few systems, and the organization simply wanted it gone. Using regedit.exe, I found a service that appeared to
be suspicious, deleted it and rebooted the system … but the malware wasn’t gone. In this case, the malware used two
services for persistence … one that was the malware, and the other that checked for the existence of the malware, and
if it didn’t find it, installed it.

During another incident response engagement, we had located a malicious service that had a Start value of 0x02 and
would dump the virtual memory from credit card back office processing software and collect track data from the memory
dump. Using some commercial tools, we found that the service had a sleep() function; it used this because when the
system is first started, there is no credit card data in memory. Instead, it would read the contents of a register, shift the
value to the right four times, and then sleep() that number of seconds; based on other artifacts, it appeared at one point
to sleep() for several days. Under the circumstances, understanding the interaction of the malware on the system, taking
all factors into account, helped us provide the customer with a more accurate window of compromise.

In another instance, the first real indicator I’d seen of malicious services was an Event Log record. The source was
“Service Control Manager” and the event ID was 7035, indicating that a service had started … even though our findings
indicated that the system had been running for quite some time. Further examination indicated that the service was set
to start when the system was booted. All other information about the service appeared to be legitimate, even down to
the executable file appearing to be a legitimate Windows file.

The point is that it’s not always easy to locate a suspicious service or process, particularly when the bad guy is trying
really hard to not be discovered.

Chapter 3  Case Studies: The System   107

Services that run under svchost.exe have ImagePath values that
contain references to svchost.exe itself, such as:

%SystemRoot%\system32\svchost.exe -k netsvcs

Then, beneath the service key, there will be a “Parameters”
subkey that contains a value named “ServiceDll,” which points to
the DLL from which the service is run. Conficker is an example
of a worm that used this technique for persistence. By creating a
service in this manner, it makes the malware a bit harder to
find, but not impossible. All we have to do is drop down to the
Parameters subkey beneath the malicious service, and the
ServiceDll value will point us to the offending malware. Some of
the things we’d want to look for with respect to the listed DLL are
unusual paths (i.e., the path name includes “temp,” and so on),
odd looking or apparently names for the DLL itself, and so on.
Looking at the referenced DLL itself, misspelled or missing file
version information, evidence of the use of a packer to obfuscate
the executable code, and so on, are indicators of possibly mali-
cious files.
A side effect of the use of services as a persistence mechanism

for malware is that the Windows operating system “does things”
that can make an analyst’s task of locating the malware, or the ini-
tial date that the system was compromised, a bit easier. In par-
ticular, when a service or device driver is actually “run,” in many
cases, an entry beneath the System\CurrentControlSet\Enum\Root
appears; specifically, a subkey whose name is “LEGACY_<service
name>,” as shown in Figure 3.15.
Again, these keys appear to be created relatively close to the

time that the service is first run. During multiple malware and
intrusion examinations involving the creation of services (par-
ticularly those that are loaded and run through svchost.exe),
there appears to be a correlation between when the file was first

Note
The Microsoft\Windows NT\CurrentVersion\SvcHost key from within the Software hive can also provide information
about services that should be running “under” svchost.exe.

The svcdll.pl plug-in combs through the services keys within the System hive ControlSet identified as “Current” and
displays all of those that are loaded by svchost.exe, sorting them based on their key LastWrite times. The svchost.pl
plug-in extracts the values and data from the SvcHost key within the Software hive. Because RegRipper and its plug-ins
are open-source, anyone with a modicum of Perl programming skill can easily create new plug-ins that perform different
functions or display the output in a more meaningful manner.

108   Chapter 3  Case Studies: The System

created on the system, an Event Log entry indicating that the ser-
vice was started, and the LastWrite time on the LEGACY_* sub-
key related to the service. This information can be very valuable
when attempting to determine and/or validate the time frame of
the initial compromise, or an overall window of compromise.
Beneath each of these LEGACY_* keys, you will often find

a subkey named “0000,” which also appears to be created and
modified in some way when a service is launched. Therefore, the
LastWrite time on the LEGACY_*\0000 key for a particular ser-
vice should closely approximate the last time the service was run.
For example, on a Windows XP Service Pack 3 system that I was
examining, the Browser service was configured to start automati-
cally when the system booted. The LastWrite time on the Browser
service key was 11 August, 2010, at approximately 08:10:28 UTC,
and the LastWrite time on the LEGACY_BROWSER\0000 key
was 08:11:23 UTC on the same day. As it turned out, the system
had last been booted at approximately 08:08 UTC on 11 August,
2010. The LastWrite time on the LEGACY_BROWSER key was
9 May, 2008 at approximately 01:56:17 UTC, which approximates
to the time that the system was installed. This same sort of anal-
ysis applies to services that are started manually, and should be
carefully considered as part of your analysis, including correlat-
ing this information with other artifacts from the image, such as
Event Log entries, and so on.
During an examination I was working on, not long ago, I

found what turned out to be a service installed in conjunction
with an incident. I say “an incident” because, as is sometimes
the case, when examining a system to determine the root cause
of one incident, I run across indications of a previous or multiple

Figure 3.15  Enum\Root\LEGACY_* keys

Chapter 3  Case Studies: The System   109

incidents. In some instances, I’ve found indications of multiple
different bits of malware, as well as one or more intrusions. In
this case, I found a service that had been installed, and the file
system metadata (i.e., time stamps) for the executable file indi-
cated that it had been created on the system in February, 2009,
which was 15 months earlier to the incident I had been asked
to investigate. The LastWrite time on both the LEGACY_* and
LEGACY_*\0000 subkeys for the service indicated that it had
been first launched shortly after the executable file had been cre-
ated on the system, and that was the only time that the service
had been launched. Further analysis determined that the service
was not configured to start automatically when the system was
booted, but instead was set to be started manually.
Another way that the LastWrite time for the LEGACY_* key can

be useful in determining the time frame of an incident or intru-
sion is when the executable file (.exe or .dll file) itself is subject
to “time stomping.” That is, there is malware that, when it is
installed, the executable file Mac times are modified so that it
remains hidden from rudimentary detection techniques, such
as searching for new files on a system based on creation dates or
creating a timeline of system activity for analysis. In this case, an
anomaly may be detected if the creation date for the executable
file were sometime in 2004, but the LastWrite time for the ser-
vice’s LEGACY_* key were, say, in 2009.
I, and others, have used this technique to great effect. There

have been a number of examinations during which I have found a

Tip
As noted earlier in this book, there do not appear to be any publicly available APIs for arbitrarily modifying Registry key
LastWrite times, as there are with respect to file Mac times (i.e., SetFileTime() ). As such, a better source of file system
metadata that you could correlate to the LastWrite time of the service’s LEGACY_* key would be the creation date from
the file’s $FILE_NAME attribute in the MFT.

Note
The legacy.pl plug-in extracts the names of the LEGACY_* subkeys from the Enum\Root key and displays them sorted
based on their LastWrite times. Correlating this information with the svcdll.pl and scv2.pl plug-ins (or any others that
extract information about services) can prove to be very beneficial in locating malware, as well as establishing the time
frame of the initial intrusion.

110   Chapter 3  Case Studies: The System

suspicious file, or an unusual service referenced in the Event Log,
and locating the LEGACY_* entry in the Enum\Root key has led
me to other interesting information in my timeline. In most cases,
I’ve seen file creations “nearby” in the timeline that provide me
with a clear indication of the initial indicators of the incident.

USB Devices
Another item of interest to analysts will often be the devices (par-
ticularly USB devices) that had been attached to the system.
Research into this area has been going on for some time; Cory
Altheide and I published some of our joint research in this area
in 2005, and some more recent analysis findings have been
documented by Rob Lee on the SANS Forensic Blog [20] on
9 September, 2009. In short, the System hive maintains a great deal
of information about the devices and when they were attached to
the system (some additional information about when the devices
were attached will be discussed in Chapter 4, “Case Studies:
Tracking User Activity”).
In short, when a USB device is connected to a Windows sys-

tem, the Plug-and-Play (PnP) manager receives the notifica-
tion and queries the device. Information about the device,
extracted from the device descriptor (not part of the memory
area of the device) is then stored in the System hive beneath
the CurrentControlSet\Enum\USBStor and \USB subkeys. The
storage device is then (most often) recognized as a disk device
and mounted as a drive letter/volume on the system. As such,
additional information related to the device is recorded in the
MountedDevices key within the System hive, as well as two sub-
keys beneath the Control\DeviceClasses key.
Let’s take a look at what this looks like in the System hive.

First, beneath the Enum\USBStor key, we can find where devices
are listed, first by a key known as a device class identifier (ID),
and by a subkey beneath the device ID known as the unique
instance ID, as shown in Figure 3.16.

Figure 3.16  USB Device in the
Enum\USBStor Key

Chapter 3  Case Studies: The System   111

As you can see in Figure 3.16, the device class ID tells us
a little bit about the device itself (in this case, the device is a
500GB Seagate “wallet” drive). Beneath the device class ID, we
see two unique instance IDs, which are the device serial num-
bers extracted from the device descriptor of each device. In
each case, the unique instance ID key contains information
about the devices within Registry values, including the device
“FriendlyName” (in both cases, “ST950032 5A2 USB Drive”).
Now, not every USB device has a serial number in its device

descriptor. In such cases, Windows will assign a unique instance
ID to the device. In order to tell when this is the case, take a look
at the unique instance ID for the device, and if the second charac-
ter (not the second to last character, but the second character in
the string) is an “&” (as illustrated in Figure 3.17), then the unique
instance ID was created and assigned by the operating system,
rather than extracted from the device descriptor of the device.

Mapping Devices to Drive Letters
Once we have information about the USB devices attached to the
system, we can attempt to map that device to a drive letter. This may
not always be possible, particularly, if multiple devices had been
successively connected to the system. For example, I’ve connected a
thumb drive to my system that has been mounted as the drive letter
F:\. Later, I disconnect the device, and then at some point connect
another device, which is also mounted as the F:\ drive.
Before continuing, we need to understand that Windows

treats external USB drives (hard drives in enclosures, such
as “wallet” drives) and thumb drives or USB keys differently.
Specifically, thumb drives contain a value within their unique

Figure 3.17  Unique Instance ID Assigned by Windows

Note
The usbstor.pl RegRipper plug-in extracts information from the Enum\USBStor key; specifically, for each device class ID,
it lists the FriendlyName value (and where applicable, the ParentIdPrefix value) for each unique instance ID (listed as
“S/N” for serial number in the plug-in output). The Enum\USB key contains information about all USB devices that had
been connected to the system (quite naturally, on some systems, I have entries for “Tableau USB-to-SATA” device), and
the usbdevices.pl plug-in will extract this information.

112   Chapter 3  Case Studies: The System

instance ID key called the ParentIdPrefix; external drives do
not contain this value. I have also seen that neither the stor-
age component of my Motorola MB300 BackFlip smartphone
nor a Garmin Nuvi (both the SD card and the flash device) will
have a ParentIdPrefix value populated beneath the unique
instance ID key. The usbstor.pl RegRipper plug-in will display
the ParentIdPrefix value for those devices that have the value, as
illustrated as follows:

Disk&Ven_Generic-&Prod_Multi-Card&Rev_1.00 [Sat Jan 2
12:56:01 2010]

 S/N: 20071114173400000&0 [Sun Aug 1 10:06:03 2010]
 FriendlyName : Generic- Multi-Card USB Device
 ParentIdPrefix: 7&24e8d74f&0

However, as indicated, external drives (usually, those in enclo-
sures, produced by Maxtor, Western Digital, and so on) will not
have ParentIdPrefix values, as illustrated as follows:

Disk&Ven_Maxtor&Prod_OneTouch&Rev_0125 [Thu Mar 4 15:50:13
2010]

 S/N: 2HAPT6R0____&0 [Wed Jun 30 01:27:21 2010]
 FriendlyName : Maxtor OneTouch USB Device
 S/N: 2HAPT6VY____&0 [Thu Jul 8 00:34:48 2010]
 FriendlyName : Maxtor OneTouch USB Device

This is important because we may be able to use this informa-
tion to map a thumb drive or key to a drive letter. I say “may be
able to” because it really depends on how soon after the device
being connected to the system that an image (or just the System
hive) is acquired from the system. As I mentioned earlier, drive
letters will very often be reused, so disconnecting one device and
connecting another may result in both devices being assigned
the same drive letter.
All of the values within the MountedDevices key have binary

data. However, different data can mean different things. For
instance, Figure 3.18 illustrates an excerpt of values from the

Figure 3.18 E xcerpt of Values
from MountedDevices Key (RFV)

Chapter 3  Case Studies: The System   113

MountedDevices key of a System hive file, viewed through the
Windows Registry File Viewer (RFV).
As you can see from Figure 3.18, there are two basic types of

value names; those that begin with “\DosDevices\” and refer to a
drive or volume letter, and those that begin with “\??\Volume” and
refer to volumes. These values have data of different lengths; some
are 12 bytes long, whereas others are longer. Many of the longer
ones are actually Unicode strings that refer to devices, strings that
we can read by double-clicking the value (RFV opens a Data View
dialog). The contents of the data for “\DosDevices\H:” (high-
lighted in Figure 3.18) is shown in Figure 3.19.
The Unicode string in Figure 3.19 refers to a removable stor-

age device (“\??\Storage#RemovableMedia#,” in this case, a USB
device), and the highlighted substring “7&24e8d74f&0” is the
ParentIdPrefix value for one of the USB devices that had been con-
nected to the system. Therefore, we can use the ParentIdPrefix
value to map a USB thumb drive from the Enum\USBStor key to
a volume identifier within the MountedDevices key, and possibly
even to a drive letter. An important factor to keep in mind, however,
is that if you plug in one device that is mapped to drive H:\, discon-
nect it, and then connect another device that is mapped to drive
H:\, the previous data for “\DosDevices\H:” is replaced.

Getting Historical Information
Historical information about drive mappings in the hive files can be
found in Windows XP system restore points, as well as within hive files
from volume shadow copies on Vista and above systems.

Using the usbstor.pl RegRipper plug-in, we can obtain infor-
mation about USB removable storage devices attached to the
system (note that the key LastWrite times are displayed, but are

Figure 3.19 M ountedDevices Key Value Data Showing ParentIdPrefix

114   Chapter 3  Case Studies: The System

irrelevant to this example), an excerpt of which is illustrated as
follows:

Disk&Ven_Generic-&Prod_Multi-Card&Rev_1.00 [Sat Jan 2
12:56:01 2010]

 S/N: 20071114173400000&0 [Sun Aug 1 10:06:03 2010]
 FriendlyName : Generic- Multi-Card USB Device
 ParentIdPrefix: 7&24e8d74f&0

From the mountdev.pl plug-in, we can get information about
the values listed in the MountedDevices key, which appears as
follows:

Device: \??\STORAGE#RemovableMedia#7&24e8d74f&0&RM#{53f5630d-
b6bf-11d0-94f2-00a0c91efb8b}

 \??\Volume{47042c43-f725-11de-a8a5-806d6172696f}
 \DosDevices\H:

So now, we’re able to map a USB thumb drive to a drive letter.
But what about the USB external drives, such as those in enclo-
sures (i.e., “wallet” drives, and so on)? If you remember from
Figure 3.18, several of the values have data that is only 12 bytes
long. These are volume identifiers and drive letters that refer to
the external drives. In these cases, the first 4 bytes (DWORD) are
the drive signature (also known as a volume ID) from the hard
drive itself. This signature is written to a hard drive, beginning
at offset 0x1b8 (440 in decimal) within the master boot record
(MBR) when Windows formats the drive. You can view this value
by opening the first 512 bytes of the hard drive (MBR) in a hex
editor and navigating to offset 0x1b8. The remaining 8 bytes
of the data are the partition or volume offset. In Figure 3.18, we
see two drive letters (\DosDevices\C: and \DosDevices\F:) with
partition offsets of 0x7e00, which is 32256 in decimal; divid-
ing by 512 byte sectors, this means that the partitions or vol-
umes start at sector 63 on their respective hard drives (note that
\DosDevices\C: refers to the hard drive installed in the system,
and is used as an example).
What this means is that there is not a direct method for map-

ping a USB external hard drive listed in the Enum\USBStor key to
a drive letter listed in the MountedDevices key.
Although not specifically recognized as a device, per se, the

MountedDevices key also maintains information about TrueCrypt
[21] volumes that had been mounted on the system, as shown in
Figure 3.20.
As you can see, the value name is a bit different from other

entries within the MountedDevices key, and the binary data is 16
bytes long and spells out “TrueCryptVolumeU.” I have seen other
similar values where the data spells out “TrueCryptVolumeT” or

Chapter 3  Case Studies: The System   115

“TrueCryptVolumeS.” Although this will give you an indication of
a user-accessing TrueCrypt volumes, it does not explicitly tell you
where those volumes exist.

Portable Devices
On Vista and Windows 7, even more information is maintained about
attached (portable) devices, albeit in the Software hive. Beneath the
Microsoft\Windows Portable Devices\Devices key, you will see a number
of subkeys that refer to devices. The subkey names can be parsed to get
the name of the device and, if available, the device serial number. These
subkeys also contain a value named “FriendlyName,” which, in many
instances, will include the drive letter to which it was mounted, such
as “Removable Disk (F:).” Further testing is required, but in some lim-
ited sample cases, the LastWrite time for the device subkey seems to
correlate closely to the time that the device was last connected to the
system. For example, on one Vista test system, a device (DISK&VEN_
BEST_BUY&PROD_GEEK_SQUAD_U3&REV_6.15, with serial number
0C90195032E36889&0) had a subkey beneath the Devices key with the
LastWrite time of Thu Feb 7 13:26:19 2008 (UTC). The corresponding
subkey for the same device, beneath the DeviceClasses subkey (we will
discuss this key later in the chapter), had a LastWrite time of Thu Feb 7
13:26:02 2008 (UTC).

When a USB device is first plugged into a Windows system,
the PnP manager queries the device to determine information
about the device, in order to figure out which drivers to load for
that device. On Windows XP and 2003 systems, this information
is maintained in the setupapi.log file (for Vista/Windows 7, the
file is setupapi.dev.log [22]). Once the device is loaded, two addi-
tional keys are created for the device beneath the DeviceClasses
key within the System hive. Both of these keys are globally unique

Figure 3.20 T rueCrypt Volume Listed in the MountedDevices Key

116   Chapter 3  Case Studies: The System

identifiers (GUIDs); one refers to disks, and the other refers to
volumes, as shown below:

Disk GUID – {53f56307-b6bf-11d0-94f2-00a0c91efb8b}
Volume GUID – {53f5630d-b6bf-11d0-94f2-00a0c91efb8b}

Both of these GUIDs are defined in the ntddstor.h header
file used in Windows. The first GUID, which begins with
“53f56307,” is defined as GUID_DEVINTERFACE_DISK, or Disk
ClassGUID, and refers to disk devices. An example of what the
DiskClassGUID subkeys look like is shown in Figure 3.21.
As shown in Figure 3.21, we see keys whose names begin

with “##?#USBSTOR#”; these keys go on to contain device
names that look very much like the device descriptor names
from the USBStor key mentioned earlier in the chapter. The key
name also contains the unique device descriptor or serial num-
ber for the device. According to research conducted and pub-
lished by Rob Lee (of Mandiant and SANS fame), the LastWrite
time for this key indicates the first time that the device was last
connected to the system during the most recent boot session.
What this means is that if the system was booted at 8:30 a.m.
and the device was connected to the system at 9:00 a.m., dis-
connected, and then reconnected later that day, the LastWrite
time of the device’s subkey beneath the DiskClassGUID key
will be 9:00 a.m. This should remain consistent regardless of the
number of times the device is disconnected and reconnected
to the system.

Figure 3.21 D iskClassGUID Keys in Windows XP System Hive

Tip
According to Rob Lee’s research, the time that a USB device was last connected to a Vista system can be correlated to
the LastWrite time of the ControlSet00n\Enum\USB key for the device. For Windows 7 systems, the LastWrite time of
the ControlSet00n\Enum\USBStor key for the device will tell you when it was last connected to the system.

Chapter 3  Case Studies: The System   117

The other GUID is defined as GUID_DEVINTERFACE_VOLUME,
or VolumeClassGUID, and refers to volumes. The subkeys beneath
this key are associated with volumes that are mounted on the sys-
tem, as shown in Figure 3.22.
As illustrated in Figure 3.22, the device’s key name contains

the ParentIdPrefix value for the device, mentioned earlier in this
chapter.

USB Devices
According to research conducted and presented by Rob Lee, additional
information regarding determining the last time that a USB device was
connected to a system is available in the user’s NTUSER.DAT hive, spe-
cifically beneath the MountPoints2 key. This will be discussed in greater
detail in Chapter 4, “Case Studies: Tracking User Activity,” but this pro-
vides an analyst with two important pieces of information: First one is,
of course, the last time that the device was connected to the system.
The second one is that by the presence of the key within the user’s hive,
there is now an association with a specific user. Although a device may
have been connected to a system, the analyst will be able to determine
the time frame that it was last connected, which may be important when
developing a time line of activity on the system, as well as which user
account was logged in when the device was connected.

Printers
There may be times during examinations when you will want
to know which printer or printers the system had access to, and
may have used. For example, many analysts are familiar with
metadata maintained by documents, in particular MS Office
Word and Excel documents that use the older OLE/structured
storage format (pre-Office 2000 documents), and this informa-
tion can provide significant information during examinations
involving the possible theft of intellectual property. One of the
pieces of metadata maintained in some documents is the date
that the document was last printed.

Figure 3.22  VolumeClassGUID Keys in Windows XP System Hive

118   Chapter 3  Case Studies: The System

Knowing which printer documents may have been sent to
may be helpful in developing further information about the case.
MS KB article 102966 [24] provides some excellent information
about the keys with the System hive (as well as within the user’s
hive) that pertain to printers known to the system.

Firewall Policies
With Windows XP Service Pack 2, Microsoft introduced a firewall
capability (which is now included with all versions of Windows
[25]) with the operating system distribution. Previously, if you
wanted some kind of firewall capability, you had to download
and install one on your system, or you had to set up another
system on your network to provide that capability. The Windows
firewall is usually accessed and managed through a Control
Panel applet or the netsh command locally, or through group
policies in a domain environment; however, as one would
assume, the configuration information for the Windows firewall
is maintained in the Registry, in the following key path:

ControlSet00n\Services\SharedAccess\Parameters\
FirewallPolicy\

There are two policies available in subkeys beneath the
FirewallPolicy key: StandardProfile and DomainProfile. The
StandardProfile key contains the firewall configuration for a
standalone system (laptop, home system, and so on), while the
DomainProfile maintains information about the firewall con-
figuration while the system is connected to a Windows domain.
These keys on a Windows XP system are illustrated in Figure 3.23.
Figure 3.23 is just a representative indication of the sub-

keys available beneath each profile key. Besides Authorized
Applications, there may also be an ICMPSettings key, as well
as GloballyOpenPorts key. The values beneath these keys (or
beneath their respective List subkeys) essentially provide the fire-
wall rules, if the firewall itself is enabled.
Why is this important? Well, there is a good bit of malware out

there that, on infecting a system, will attempt to disable security

Warning
A lack of awareness of document metadata issues was probably best exemplified by the issues face by the British
government in 2003, as shown by the ComputerBytesMan [23].

Chapter 3  Case Studies: The System   119

services, such as antivirus and even the firewall. Beneath the profile
key are values such as EnableFirewall and DisableNotifications,
and some malware (for example, fake security software [26])
will set these values such that the firewall and notifications (of
such things like the firewall not being enabled) will be disabled.
In these situations, it’s a good idea to document the profile key’s
LastWrite time and see if it correlates to other malicious activity
(i.e., malware installation, other files or Registry keys being cre-
ated or modified on the system, and so on), as this may provide
you with additional clues as to the extent of the infection or com-
promise. In other instances, malware has added entries to the list
of applications authorized to communicate out through the fire-
wall (for an example, see www.securelist.com/en/descriptions/
old126765 [27]). The RegRipper fw_config.pl plug-in does a very
good job of retrieving firewall settings information from Windows
XP systems, and presenting it in an easy-to-understand format.
For example, below is an AuthorizedApplications\List value I
found during an examination of a Windows XP system thought to
be infected with malware (wrapped for clarity):

C:\Documents and Settings\user\Local Settings\Temporary
Internet Files\

 Content.IE5\DN3ZPPK2\EZWebUpdate [1].exe -> C:\Documents and
Settings\

 user\Local Settings\Temporary Internet Files\Content.IE5\
 DN3ZPPK2\EZWebUpdate [1].exe:*:Enabled:EZWebUpdate

It’s not often that you find an authorized application run-
ning from the user’s temporary Internet files directory (or “Local
Settings\Temp” directory, either, for that matter). This par-
ticular system also had entries allowing multiple peer-to-peer

Figure 3.23 F irewall Keys (Windows XP)

120   Chapter 3  Case Studies: The System

applications (Kazaa, Limewire, and so on), as well as other appli-
cations and games (WinVNC, Worlds of Warcraft, FarCry, WS_FTP,
and so on), to communicate off of the system. Looking beneath
this key, or beneath the GloballyOpenPorts\List key, will often
provide indicators of possible issues on the system.
With Windows Vista came improvements in the network stack,

along with some corresponding changes in how the firewall is
configured and managed (see “Exploring the Windows Firewall”
on Technet [28]). There were also changes to the Registry, as seen
in Figure 3.24.
In Figure 3.24, we see the addition of a “PublicProfile,” as well as

key called “FirewallRules.” According to MS KB article 947213 [29],
the PublicProfile applies to a network interface when the system is
not connected to a domain and the administrator has not specified
that the network is private; this would apply to public Wifi connec-
tions, such as at coffee shops, libraries, and so on. Each of the pro-
file keys contains values that indicate if the profile was enabled at
the time that the image was acquired, as well as a Logging subkey
that points to information such as the location of the firewall log file
(C:\Windows\system32\LogFiles\Firewall\pfirewall.log, by default
on Windows Vista and Windows 7), the size of the firewall log, and
whether successful connections and dropped packets are logged.
A discussion of the FirewallRules key and the values/rules it

contains is beyond the scope of this book; suffice to say that there
is a good deal of information available at the Microsoft Web site
(including MS KB article 947709 [30]) that provides information
on interacting with the firewall through tools such as the netsh
command. From an analyst’s perspective, understanding how the
firewall works may provide indicators or answers as to what may
have occurred on the system.

Figure 3.24 W indows Vista Firewall Keys through RFV

Chapter 3  Case Studies: The System   121

As Windows 7 becomes more pervasive (and Windows XP
fades into the mists of time), analysts are going to need to become
familiar with analyzing firewall configurations and rules on these
systems. The newer settings are a bit more complex, but will likely
be used to allow access to and from the system, just as they were
on Windows XP. The applications that protect a system will also
likely be subverted in order to disable them, or to allow malicious
functionality.

Routes
One of the tricks that malware authors have used to “protect”
their tools is to add entries to the hosts file so that critical assets
(update sites for the operating system, applications, antivirus,
and so on) cannot be reached. By forcing the query for a host or
domain to resolve to a specific IP address, malware authors can
inhibit the functionality. After all, you wouldn’t want the installed
antimalware product to update itself and then detect the pres-
ence of your malware, would you?

This is also something that can be used legitimately. According
to the MS KB article on name resolution order [31], after check-
ing to see if a name is its own, a Windows system will then check
the hosts file. System administrators can add entries that redirect
traffic to specific sites, and even some antimalware and antispy-
ware applications will modify this file to force known-bad hosts
or domains to resolve to the local host (i.e., 127.0.0.1). Parents can
also do this with Facebook and MySpace!

Another technique that can be used is to modify persistent
routes on the system. One command, which many incident
responders run when collecting information is route print, which
displays the current routing table for TCP/IP communications on
the system. This facility also has the ability to add persistent routes
that will remain in place between reboots, through the route add
command [32]. If an added route is designated as “persistent”
through the use of the “–p” switch, the command adds the routes
to a Registry key within the System hive (which can be extracted
using the routes.pl RegRipper plug-in). Interestingly enough, mal-
ware such as Backdoor.Rohimafo (a description of this malware
is available at the Symantec Web site) appears to add persistent
routes to the system in order to prevent the system from access-
ing sites that may result in updates that allow the malware to be
detected.

As we discussed in Chapter 2, “Tools,” Michael Hale Ligh req
uested me to review a chapter of an upcoming book entitled
Malware Analyst’s Cookbook and CD: Tools and Techniques For

122   Chapter 3  Case Studies: The System

Fighting Malicious Code (Wiley Publishing, no publication date
available as of this writing), which he’s coauthoring. In the chap-
ter, the authors referred to the use of RegRipper and some plug-
ins that they’d created for use in malware detection, and asked
me to review the chapter to make sure that the information about
RegRipper was technically correct (it was!). One of the plug-ins
described in the chapter was, in fact, one that parses the persis-
tent routes from the following key in the System hive:

ControlSet00n\Services\Tcpip\Parameters\PersistentRoutes

When I reviewed the chapter, I e-mailed Michael to let him
know that I had recently written my own plug-in (routes.pl) to do
the same thing. I’d been involved in examining a system where
searches of the system for a specific IP address range had returned
hits in the System hive, and a closer examination had revealed
that the IP address was listed in the PersistentRoutes key.

PendingFileRenameOperations
Another plug-in that the authors described in the chapter that Michael
Hale Ligh asked me to review extracted the contents of the following key:

ControlSet00n\Control\Session Manager\PendingFileRename
Operations

Apparently, there are examples of malware that, in order to clean
up behind itself, will attempt to delete files using the MoveFileEx() API
function with the MOVEFILE_DELAY_UNTIL_REBOOT flag set; when
this API function is used, the files to be deleted will be written to the
PendingFileRenameOperations key. The next time that the system is
booted, the Session Manager will parse the contents of the key for file
name pairs; if the second entry is empty, the file is deleted.
There are two important factors to keep in mind about this informa-

tion. The first is that in order to obtain and use the information in this
key, you would need to detect and respond to an incident before the
system is rebooted. The second is that if you are able to respond appro-
priately and collect the information, the LastWrite time of the key can
give you an idea of when the system had been infected.

Network Interfaces
Much like other devices, information about the network interfaces
available on the system is maintained in the System hive. The main
path for information about the network interfaces available on a
system is the ControlSet00n\Services\Tcpip\Parameters\Interfaces
key. Beneath this key, you’ll find a number of subkeys whose names
are globally unique identifiers (or GUIDs, pronounced goo-idz).
Each of these subkeys refers to a specific interface, and the GUID

Chapter 3  Case Studies: The System   123

names can be mapped to more easily readable names for the inter-
faces (see the “Network Cards” subsection later in this chapter).
The interface subkeys contain information about IP addres

ses assigned (static assignments or through DHCP), gateways,
domains, as well as when DHCP leases were assigned, and when
they terminate. This information can be extremely helpful during
a wide variety of examinations, particularly when attempting to
tie a particular system to entries found in router or Web or FTP
server logs. An excerpt of what this information looks like in the
Registry is shown in Figure 3.25.

Figure 3.25 E xcerpt of Network Interface Values (Windows XP)

124   Chapter 3  Case Studies: The System

The RegRipper plug-in nic2.pl does a really good job of
extracting this information, and even goes so far as to trans-
late some of the 32-bit time stamp values (LeaseObtainedTime,
LeaseTerminatesTime, and so on) into something a bit more
human-readable.

File System Settings
The System hive also maintains information about the con-
figuration of the file system, and there are several settings that
may affect your analysis. For example, there is a value named
“NtfsDisableLastAccessUpdate” [33], which, back in the early days
of Windows XP and 2003, was intended as a setting that could
be used to enhance the performance of the system. The inten-
tion was that on high-volume file servers, disabling the updating
of last access times on files would improve overall performance;
however, this was an optional setting at the time, as the value did
not exist by default.
Interestingly enough, one of the surprises with the release

of Windows Vista was that not only did this value exist, but also
updating of last access times on files was disabled by default!
Consider for a moment the effect that had on a lot of traditional
computer forensic methodologies.
Beneath the same key is a value named “NtfsDisable

8dot3NameCreation”; if this value is set to 1 (and the file system
is NTFS), then the creation of short file names will be disabled
[34]. This may be an issue if you expect to see file names on the
system similar to “PORTER~!.PPT” rather than “porter’s latest
widgets sales presentation.ppt.” Enabling this functionality tells
the file system to not create the shorter file names.

Software Hive
The Software hive maintains a great deal of configuration infor-
mation for the overall system as well as applications, and it can
provide indications to a knowledgeable analyst of how the sys-
tem and installed applications may have appeared, behaved, and

Tip
Part of computer forensic analysis is not just recognizing what is out of place or unusual; it’s also recognizing when some
artifact should be present, but isn’t.

Chapter 3  Case Studies: The System   125

responded when the system was running. Understanding the role
that these keys and values play in configuration of applications
and the operating system can provide the analyst with a great
deal of insight into a variety of different types of examinations.
Throughout this section, we will discuss various keys and values
from the Software hive that play a significant role in the over-
all configuration of the system and applications. Keep in mind,
though, that we cannot discuss every possible key and value
because, quite simply, I need to finish this book at some point and
send it to the printer! Also, there are constantly new applications
being developed, as well as current applications (and the operat-
ing system) being updated to include new keys and values. What
I hope to do is to provide you with insight into some of the keys
and values that you can expect to find on a wide range of systems,
including Windows XP all the way up through Windows 7.
There are a number of configuration settings that could affect

your analysis, and ultimately, your case; in earlier books, I have
referred to these as “time bombs,” because at the time, they
weren’t something that I (or others) had seen on a regular basis.
We’ve already mentioned some of these settings in the “System
Hive” section of this chapter, and we’ll be discussing some of the
settings in the Software hive here in this section.
One example of a potential time bomb (or at the very least,

something to be aware of) is the ClearPagefileAtShutdown value
[35]. This value, when set to 1, tells the system to fill inactive
pages in the page file with zeros when the system is shut down.
This is described as a “security feature” that prevents information
from being read by other processes; however, in some cases, this
can also significantly hinder examinations.
An example of additional settings that may have a signifi-

cant impact on examinations can be found within the Microsoft\
Windows\CurrentVersion\Internet Settings key within the Soft
ware hive. The exact value names depend on the version of
Internet Explorer installed on the system (per [36]), and for IE 7
and 8, the values are “BypassSSLNoCacheCheck” and “Bypass
HTTPNoCacheCheck,” respectively These values, when enabled
(i.e., set to 1) tell the system (through the appropriate API) to ignore
the “Cache-control:no-store” and “Cache-control:no-cache” set-
tings in HTML headers [37].
Now, these values do not exist by default, and need to be set

ahead of time, but they can have a significant impact on examina-
tions, in that malware authors have been seen using the WinInet
API to allow their malware to communicate off of systems, noti-
fying the author of infected systems, obtaining updates, upload-
ing captured data, and so on. This, in itself, is nothing new, but it

126   Chapter 3  Case Studies: The System

can significantly impact your examination when the author uses
the “Cache-control:no-cache” HTML header, telling the system
to not cache data, meaning that indications of this communica-
tion activity will not appear in the index.dat or within the Internet
cache (usually within the Temporary Internet Files folder).
Robert Hensing described in his blog [38] on 15 November,

2006 about how the user of specific API functions will cause the
index.dat and Internet cache/Temporary Internet Files folder to
be updated; in this case, he was referring to how using those APIs
from a system-level account (as a result of a successful exploit,
and rather than using a “normal” user account) will cause the
Internet history of the “Default User” to be updated. So, in short,
the use of the APIs results in this update, and in order to leave
even fewer indications on the system, some malware authors
have been seen using the “no-cache” setting. By “seen,” in some
cases, I mean that while no indications of the activity were dis-
covered in the Internet history, there were indications found
in the page file (had the ClearPagefileAtShutdown value been
enabled, these indications may have been overwritten with
zeros) or within captured network activity. Therefore, system
administrators should consider setting the appropriate Internet
Settings values described in MS KB article 323308 in order to tell
the system to ignore the “no-cache” setting; however, as with any
other settings, these should be thoroughly considered within the
context of the overall system and network infrastructure.
There’s another value of interest within the Software hive that

may have an effect on your examination; the NukeOnDelete
value beneath the Microsoft\Windows\CurrentVersion\Explorer\
BitBucket key. What this does is allow someone to disable the
Recycle Bin functionality; this is similar to the “Shift-Delete”
functionality, only it applies across the board, for all actions. For
example, if a user goes into Windows Explorer, selects a file, and
hits the Delete key, under normal circumstances, the file goes to
the Recycle Bin. However, if the NukeOnDelete value is present
(it’s not present by default) and set to 1, then you shouldn’t
expect to see any files in the Recycle Bin. Figure 3.26 shows the

Warning
According to several sources, the “Cache-control:no-cache” (and “no-store”) settings simply tell the browser to make its
best attempt at not caching (or storing) the data; it does not guarantee that no artifacts of the transaction will be produced.
These settings are usually used to force refreshing of data, as well as attempting to prevent sensitive information from
being stored locally on systems.

Chapter 3  Case Studies: The System   127

Figure 3.26 W indows XP Recycle Bin Properties

Tip
There are a number of Registry keys that exist in both the Software hive as well as within the user’s NTUSER.DAT hive,
and have identical paths. One example is the Run key [39]. The precedence of these entries will depend on the key itself
and what is specified in vendor documentation. Just as with the key in the Software hive, the Run key in the user’s
NTUSER.DAT hive is also used as a persistence mechanism for malware. In some cases, the key paths are the same, but
very different information is maintained within the keys. For example, with the Software hive, the key may maintain con-
figuration information, while within the NTUSER.DAT hive, the key will contain settings, most recently used (MRU) lists,
and so on. The Internet Settings values described in MS KB article 323308, for example, allow the system administrator
to set the described functionality on a system-wide basis through the Software hive or on a per-user basis by applying
those settings to the appropriate user profile.

128   Chapter 3  Case Studies: The System

Recycle Bin properties dialog from Windows XP, and where
the NukeOnDelete value can be set. The properties dialog for
Windows 7 is very similar, and in fact, uses the same verbiage for
the setting.
One indicator that may be of interest is if the NukeOnDelete

value is present, but set to 0. As this value does not exist by
default on Windows XP or Windows 7, the presence of the value
may indicate that the value had been set at one time. As part of
your analysis, you may want to correlate the LastWrite time of the
Explorer key to other artifacts from the system.

Redirection
In order to handle some differences between 64-bit and 32-bit
systems, Windows (XP, up through and including Windows 7)
uses Registry redirection in order to maintain different logical
“views” of the Registry, as different versions of software may use
different Registry keys and values. In short, the major difference
(from the perspective of Registry analysis) is that 32-bit applica-
tions run in WOW64 mode will access and write to keys and val-
ues beneath the Wow6432Node key [40] within the Software hive.
As such, rather than the usual key path that appears as follows:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion

…you would then see the key path as appears below:

HKEY_LOCAL_MACHINE\Software\WOW6432Node\Microsoft\Windows\
CurrentVersion

However, not all Registry keys are redirected on a 64-bit sys-
tem; some are shared by both 32-bit and 64-bit versions of the
operating system. Microsoft maintains a list of redirected and
shared keys in the article “Registry Keys Affected by WOW64” [41].
What this means is that when analyzing the Registry from 64-bit
systems, you’ll need to be cognizant of the updated key path and
how it applies when viewing hives through a Registry viewer, or be
sure to modify your RegRipper plug-ins to take this into account.
Oddly enough, I have seen the Wow6432Node key play an

important role on one engagement; several years ago, I was on an
engagement where the customer had installed a 32-bit version of
MS SQL Server on a 64-bit version of Windows 2003 Server.

File Associations
In order to stay current in this profession, one of the activities I
engage in is to be an active member of several lists and forums.
This way, I get to not only ask questions of my own, but I can

Chapter 3  Case Studies: The System   129

see questions posted and responded to by others, and this can
be very educational. One of the questions I see time and again
in a wide range of venues is “which application uses a file with
this extension?” or something similar. In short, it appears that an
analyst has found a file on a system with a particular extension,
and wants to know which application uses or created that file. In
most instances, if an application creates a file with a particular
extension, it can then also be used to read that file, or process it
in some manner.
The usual response to questions such as these is to refer the

original poster to any one of a number of Web sites that main-
tain information such as this, but to me, this doesn’t seem like a
very good initial approach. The reason is that when an applica-
tion is installed on a system, part of the installation process will
be to associate particular file extensions with the application. For
example, when I install ActiveState Perl on one of my Windows
systems, files with the “.pl” extension are associated with the
Perl executable. Information about file associations is main-
tained in the “Classes” key of the Software hive; simply navigate
to the key and begin looking for subkeys whose names begin
with a dot (i.e., “.”). On my Windows XP system, I found the “.bat”
extension, which usually refers to batch files. Within that key,
the “(Default)” value contains simply “batfile.” So, I locate the
Classes\batfile key, and navigate through that key to the shell\
open\command key, where the “(Default)” value simply contains
“‘%1’ %*,” which indicates that this file type will be executed
from the command line. If I were to locate a .bat file through the
Windows Explorer shell and right-click on it, and choose Open
from the drop-down menu, the commands within the batch
file would be executed. However, if I navigate to the Classes\
batfile\shell\edit\command key, I see that batch file is associ-
ated with Notepad; therefore, if I were to choose “Edit” from the
drop-down menu available from the shell, the contents of the
file would be visible in Notepad. The RegRipper assoc.pl plug-in
automates locating the file extension, and then looking up the
shell\open\command value.
Another example of determining file associations involves

a more manual approach, as I haven’t seen a RegRipper plug-in
for this methodology yet. When I open RegEdit on my system
and navigate to the Classes key in the Software hive, I see a key
named “.kar.” The “(Default)” value within this key is empty,
but there is a subkey named “OpenWithList” and beneath that
key, another key named “QuickTimePlayer.exe.” This indicates
that file with the “.kar” extension may be opened with Quick
TimePlayer.exe. Other file extensions, such as “.jpe,” have two

130   Chapter 3  Case Studies: The System

subkeys beneath the “OpenWithList” key: “ois.exe” and “Picture
Viewer.exe.”
Still other extensions have different information available

through their “(Default)” values. For example, on my system, the
“.js” extension has a “(Default)” value of “UltraEdit.js,” indicating
the files with this extension will be opened in the UltraEdit editor
I have installed on my system.
I hope that this shows you that while the Internet can be a

valuable resource for conducting searches and finding some
interesting information, when attempting to determine a pro-
gram or application association with a specific file extension, we
should first consider the context of that system. I have yet to find
a site or resource on the Internet that maintains a comprehen-
sive list of all of the possible applications that could open, access,
or create files with a unique extension. I’m not saying that you
shouldn’t turn to outside resources for assistance; rather, what
I’m saying is that the question should first be considered in the
context of the system being examined.

Web Browser
With all this talk about the Internet, it’s a good time to discuss
some of the information available in the Software hive with
respect to the Internet Explorer Web browser. Many times when
beginning an analysis of a system, I’ve seen when analysts have
said that they start by checking some of the Registry values spe-
cific to Internet Explorer (IE). This is fine … but why start there
when there are a number of browsers available? Why focus on
one browser from the beginning, when there are a number of
possible targets?
There are a number of ways to determine which Web brows-

ers had been used on a system. For example, on Windows XP,
Vista, and Windows 7, you can check the available Prefetch files
to see which browsers may have been executed. However, if you
want to know the default browser in use on the system when a
user double-clicks the appropriate file or link, there are a couple
of Registry values you can check. One is the default (actually,
“(Default)”) value for the Clients\StartMenuInternet key. On my
system, the value name is “IExplore.exe” (there are also two sub-
keys: Firefox.exe and IExplore.exe), but when I log into the sys-
tem, I double-click the Firefox icon on the desktop. It says this
because when the “default browser” dialog appeared the first
time I launched the Firefox Web browser, I told it no, I do not
want to set Firefox to the default browser, and I disabled the dia-
log from appearing in the future.

Chapter 3  Case Studies: The System   131

Another place to check is the following key:

Classes\HTTP\shell\open\command

The “Default” value within this key tells you which Web browser
the system will launch when a Web connection is attempted.
However, as we discussed earlier in this chapter, there may be set-
tings within a user’s NTUSER.DAT Registry hive file that are dif-
ferent and supersede this setting. We will discuss in Chapter 4,
“Case Studies: Tracking User Activity,” how to determine specifics
about a user’s use of applications, including the Internet Explorer
browser. For the system settings, the defbrowser.pl RegRipper
plug-in will extract the necessary information from both of the
keys that we’ve discussed.
If it does turn out that the Web browser in use on a system is

Internet Explorer (IE), then another area that can be examined
for indications of malware is the Browser Helper Objects (BHOs)
listing, which is found in the following key in the Software hive:

Microsoft\Windows\CurrentVersion\Explorer\Browser Helper
Objects

BHOs are DLLs that IE can load to provide additional func-
tionality and allow for customization to the browser, much like
plug-ins used for Firefox, or shell extensions for Windows Explorer
(discussed in the “Shell Extensions” section later in this chapter).
Examples of common BHOs include those for the Adobe Acrobat
Reader, and the Google, Alexa, and Ask.com toolbars. Again, these
are DLLs that are loaded by IE and not when the system is booted
or a user logs into the system. If IE is not launched, the DLLs will
not be loaded. However, if IE is used, then the DLLs will be loaded
without any interaction with the user.
The use of BHOs to load malicious software is nothing new.

In 2002, I was working in a full-time employment (as opposed
to consulting) position at a company where someone had found
something a bit unusual on her system. It turns out that the
employee was in the marketing department, so what she found
was indeed concerning. She was viewing the online content for
our company Web site, and she noticed that in each instance
where our company name was in the Web page, the name was
now a hyperlink … which was not the behavior for which the Web
page was designed. Out of curiosity, she clicked on the hyperlink
(yeah, bad idea, I know…) and was taken to a competitor’s Web
page! It turned out that her system had been infected with a BHO
that would look for specific words and names in Web pages, and
modify the contents of the Web page to create hyperlinks to com-
petitor’s Web sites. I use the RegRipper bho.pl plug-in to extract

132   Chapter 3  Case Studies: The System

information about BHOs installed on the system for every exami-
nation, particularly those that involve malware of some kind.

Autostart Locations
Much like the System hive, the Software hive contains a num-
ber of locations from which applications and programs can be
started with little to no interaction from the user beyond simply
booting the system and logging in. Many of these locations are
used by application authors for completely legitimate purposes;
unfortunately, as we’ve mentioned with respect to BHOs, they’re
also used by malware authors.
Perhaps the most well-known of all of the autostart locations is

the ubiquitous “Run” key (Microsoft\Windows\CurrentVersion\
Run) described in MS KB article 199365 [42]. This key has long
been used by both malware and legitimate applications as a ref-
uge for persistence, and continues to be used, even today. Not
only have I seen malware that creates a value beneath this key as
recently as the summer of 2010, but I’ve seen systems infected by
one variant of malware that were later infected by another vari-
ant of the same malware (as determined by reviewing the write-
ups on the malware), so the Run key contained multiple values
that pointed to the malware variants.
Another location of interest within the Software hive is the

Microsoft\Windows NT\CurrentVersion\Winlogon\Notify key [43].
Entries beneath this key define packages (most often DLLs) that
are to receive notifications from the WinLogon process. These
notifications can include when the user logs in and the shell (i.e.,
Windows Explorer) loads, when the screensaver starts, when the
workstation is locked or unlocked, when the user logs out, and so
on. All of these actions cause an event to be generated, and pack-
ages can be designated to take some action when this occurs. The
McAfee Web site includes a write-up of a generic downloader that
uses the Winlogon\Notify key as a persistence mechanism [44].
Other examples of malware that makes use of this key include
Virtumonde (a.k.a., Vundu) and Contravirus, and a backdoor
identified at the ThreatExpert site as “Eterok.C” actually deletes
entries from the Winlogon\Notify key.
When I say “location of interest,” I know that sounds kind

of hoity-toity, but one of the things I’ve found time and again
over the years, especially with respect to autostart locations in
the Registry, is that once you stop looking at the ones you know
about, as well as for new ones, they start being used more often.
Over the years, I’ve heard malware authors say that some auto-
start locations are no longer of use (the same has been said of

Chapter 3  Case Studies: The System   133

NTFS alternate data streams, but that’s outside the scope of this
book), but the fact of the matter is that there are a great deal of
system administrators out there (as well as forensic analysts) who
simply aren’t aware of these locations and how they can be used.
Add to that instances where antivirus applications do not detect
the malware that’s actually loaded (or the antivirus applications
are disabled during the malware installation process) from these
locations, and what ends up happening is that systems get and
remain infected for a considerable period of time.

Image File Execution Options
Yet another autostart location (I told you there were a lot of
these!) can be found in the “Image File Execution Options” key.
Now, Microsoft provides documentation on the use of this key,
which is intended to provide debugging capability [45], and
it can also be used to turn off the Windows Update feature in
Windows XP [46]. Like many other tools and techniques that
are useful to administrators, this technique can also be used
for malicious purposes, and malware authors have been seen
using this technique to maintain persistence of their applica-
tions. In fact, the Microsoft Threat Encyclopedia discusses the
malware known as Win32/Bebloh.A, which uses this functional-
ity to force Internet Explorer to be launched whenever any other
browser (Opera, Safari, Firefox, and so on) is launched. And this
is nothing new … Dana Epp wrote a blog post [47] on this issue
in March, 2005. To get a lot of exposure to malware that uses this
autostart functionality, Google for inurl:nai.com “image file exe-
cution options”.

Tip
Different malware families will use different persistence mechanisms using the Registry. For example, one of the hallmarks
of a ZBot infection is the presence of a reference to the malware in the UserInit value in the Microsoft\Windows NT\
CurrentVersion\Winlogon key within the Software hive.

Other malware will leave various artifacts within the Registry; while not used to maintain persistence, these arti-
facts can be used as indicators to determine if (and possibly when) the system was infected. For example, some variants
of Ilomo/Clampi have been found to create the Microsoft\9593275321 key within the Software hive. Virut is a file infec-
tor, but some variants have been found to add a value named “UpdateHost” to the Microsoft\Windows\CurrentVersion\
Explorer key in the Software hive, as well as adding an exception for themselves to the firewall policy (see the “Firewall
Policies” section earlier in this chapter).

134   Chapter 3  Case Studies: The System

In short, by adding a “Debugger” value to the application sub-
keys beneath the Image File Execution Options key, you can force
a debugger or another application to be loaded instead. You can
demonstrate this easily by adding a key called “notepad.exe,” and
within that key, add a string value named “Debugger.” Then, add
the string “sol.exe” to the value. Now, use any method to launch
Notepad. Pretty neat, huh? And this works with any application.
If you were running a tool like Process Monitor while launching
Notepad and monitoring for Registry accesses, you’d notice that
the operating system accesses this key and attempts to locate a
subkey for the application being loaded. So, this is functionality
that, while included in Registry value, is implemented as a func-
tion of how the operating system … operates. Interestingly, I have
seen this autostart location during engagements, and as such,
wrote the imagefile.pl RegRipper plug-in to query the Image File
Execution Options subkeys, looking for Debugger values.

Shell Extensions
During an engagement, the team I was working with had col-
lected data from a system using F-Response Enterprise Edition,
and I had created a time line of system activity using several of
the data sources that we had acquired. Fortunately, not only had
we acquired the data within relatively close temporal proximity
(a Star Trek-y term I first heard used by Aaron Walters, and try to
use as often as possible…) to a user having logged into the sys-
tem, but this system also had Process Tracking enabled through
the Event Log. In short, we had a lot of really good data to work
with, and we were trying to determine how one particular piece
of malware was remaining persistent on the system. We had iden-
tified the malware itself through other techniques, but could not
determine how it was remaining persistent and being activated
on the system. The time line helped a great deal; in fact, the time
line solved the problem for us, and what we were able to see was

Note
In August, 2010, Microsoft released KB article 2264107  [48] in order to address issues related to the DLL Search Order
vulnerability, specifically as it relates to remote resources (i.e., folders) accessible through SMB and WebDAV. Specific
applications can be protected by adding the “CWDIllegalInDllSearch” value, with the appropriate data setting, to the
Image File Execution Options key. The RegRipper imagefile.pl plug-in was updated to check for both the Debugger and
CWDIllegalInDllSearch values.

Chapter 3  Case Studies: The System   135

that the malware was remaining persistent by using the Registry
without using the Registry.
If your reaction to this was, “huh?,” then that’s a good thing.

What we determined was that this apparently novel approach
to persistence was based on the use of approved shell exten-
sions. There are a considerable number of articles available at the
Microsoft Web site, as well as elsewhere on the Web, that address
topics such as writing shell extensions and shell extension secu-
rity. However, where shell extensions come into play as a persis-
tence mechanism is that they are loaded when the Explorer.exe
shell loads (when a user logs in, in part demonstrated by Event
Log data in the time line) and provide some sort of functional-
ity extension beyond the basic shell. Many of the approved shell
extensions that are loaded by the shell have explicit paths that
point directly to the DLL to be loaded, and in many cases, these
are located in the Windows\system32 directory. However, some
of the approved shell extensions (in the Software hive, as well
as in the user’s NTUSER.DAT hive) do not have explicit paths.
Therefore, when Explorer.exe attempts to load the shell exten-
sion, it must first locate it, and in doing so, it begins searching
in its own directory (C:\Windows) first. This DLL search order
behavior is documented at the Microsoft Web site [49].
During the malware reverse-engineering panel at the “SANS

What Works in Incident Response and Forensics” conference in
July, 2010, Nick Harbour of Mandiant briefly described this per-
sistence mechanism, as well, based on what his team had seen,
and how they approached the issue (Nick is well known for his
malware reverse-engineering skills). Nick’s blog post addressed
the DLL search order issue from a much wider scope, and
appeared to refer to DLLs that are loaded based on their presence
in an executable file’s import table. To read more about how he
described the issue, take a look at what Nick had to say about this
persistence mechanism in an M-unition blog post [50]. Nick also
mentions how to use the KnownDLLs (ControlSet00n\Control\
Session Manager\KnownDLLs [51]) key to protect a system from
this sort of attack.
From the perspective of the shell extensions, in short, by

using the same name as a legitimate approved shell exten-
sion (albeit one that was located in the C:\Windows\system32
directory) and placing that DLL in the C:\Windows directory,
the malware was able to ensure that it was loaded each time a
user logged in; however, this persistence mechanism neither
required modifications to any files on the system (outside of
the creation of one new one), nor did it require any modifica-
tions to the Registry. From the Microsoft site, we can see that the

136   Chapter 3  Case Studies: The System

SafeDllSearchMode functionality is enabled by default (and can
be disabled). However, close examination of the article reveals
that regardless of whether the functionality is enabled or dis-
abled, the DLL search order begins in “the directory from which
the application loaded.”
In order to assist in investigations where this functionality

may have been used as a persistence mechanism, I wrote the
shellext.pl plug-in for RegRipper. This plug-in parses through
the values of the “Microsoft\Windows\CurrentVersion\Shell
Extensions\Approved” key in the Software hive, and collects the
names (GUIDs) and data (description of the shell extension) for
each value, then navigates to the Classes\CLSID key to map the
GUID to a DLL path. An excerpt of the output of this plug-in is
provided as follows:

{6756A641-DE71-11d0-831B-00AA005B4383} MRU AutoComplete List
 DLL: %SystemRoot%\system32\browseui.dll
 Timestamp: Mon Apr 4 17:43:08 2005 Z

{7BD29E00-76C1-11CF-9DD0-00A0C9034933} Temporary Internet Files
 DLL: %SystemRoot%\system32\shdocvw.dll
 Timestamp: Mon Apr 4 17:43:09 2005 Z

{f81e9010-6ea4-11ce-a7ff-00aa003ca9f6} Shell extensions for sharing
 DLL: ntshrui.dll
 Timestamp: Mon Apr 4 18:37:13 2005 Z

As a result of the amount of data available, this plug-in can
take several seconds to run; as such, I tend to run it through rip.
exe, rather than as a RegRipper plug-in listed in a plug-ins file.
However, from the output excerpt, you can see that two approved
shell extensions (browseui.dll and shdocvw.dll) have explicit
paths, whereas the third (ntshrui.dll) does not. In this case, in
order to load the DLL, the Explorer.exe process must search for it
in accordance with DLL search order: therefore, the search begins
in C:\Windows, where Explorer.exe is located.
A very quick way to use this information during an examina-

tion is to collect all of the lines of the output that start with “DLL:”
to a file, and then to parse the file looking at directory paths. For
example, start with a command that appears as follows:

C:\tools>rip.exe –r D:\case\software –p shellext | find “DLL:” >
D:\case\file\shellext.txt

The result of the above command will be a file containing
only the lines that start with “DLL:”, and from there, you can strip
out the entries that do not contain path information such as
“%SystemRoot%\system32” or something else. Of the remaining

Chapter 3  Case Studies: The System   137

files, run a search for those files that appear in the C:\Windows
directory. If they only appear in the C:\Windows directory,
depending on the DLL in question, that may be expected; how-
ever, if files with that name appear in both the C:\Windows and
the C:\Windows\system32 directory, you may have found some-
thing of value.
Using this technique, I mounted an acquired image as a read-

only drive letter on my analysis system and ran the above com-
mand. I located a shell extension named “slayerXP.dll,” and when
running the search, I found instances of the DLL in a ServicePack
directory, as well as in the C:\Windows\system32 directory. Both
instances had the same size, as well as the same MD5 hash.
Further examination of the DLL indicated that it was a legitimate
Microsoft file.

ProfileList
The Software hive maintains a list of the various profiles that are
resident on the system, which includes both local and domain
users. When a user logs into a Windows system, the system
first checks to see if that user account has a profile on the sys-
tem. This is located in the Software\Microsoft\Windows NT\
CurrentVersion\ProfileList key, as shown in Figure 3.27.

Note
The use of approved shell extensions as a persistence mechanism is very insidious, due to its very simplicity. This
mechanism requires only that a DLL file of a specific name be created in a specific directory, and does not require any
modifications to the Registry. As long as the “subverted” shell extension does not remove regularly accessed functionality
and the capability provided by the shell extension is not missed, the malware may be run without any complaints from
the user.

To protect a system against the sort of attack that takes advantage of the DLL search order, there are two options
available. One is to locate all of the shell extensions in the Registry that use implicit paths, and give each of them the
appropriate explicit path. Another method is to add an entry for the DLL (ntshrui.dll) to the ControlSet00x\Control\Session
Manager\KnownDLLs Registry key [52].

Overall, however, this is simply one example of a much larger issue that was originally identified as far back as the
year 2000, but it became more evident in August and September, 2010 and was referred to as “DLL hijacking.” In short,
the use of shell extensions is but one example of a mechanism to get an executable to search for a DLL that it needs
to load in order to perform some function. Readers interested in learning more about this issue should search for “DLL
hijacking” through Google.

138   Chapter 3  Case Studies: The System

Each subkey beneath the ProfileList key is a security identifier,
or SID, and you can find a list of well-known SIDs in MS KB arti-
cle 243330 [54]. Each of the keys visible in the ProfileList key con-
tains information about the user profile, as shown in Figure 3.28.

Tip
Information about the contents of user profiles and how they are created is available in the TechNet article, “User Profile
Structure” [53].

Figure 3.28  Contents of a ProfileList Subkey

Figure 3.27  ProfileList Key

Chapter 3  Case Studies: The System   139

Some of the information visible in Figure 3.28 can be very
useful for, well, some pretty obvious reasons. For example, the
ProfileImagePath value tells us where the user profile and all of
its associated files (NTUSER.DAT, for example) and subdirec-
tories are located. On Windows 2000, XP, and 2003 systems, the
default or usual path where we expect to find user profiles is in
the path, “C:\Documents and Settings”; for Vista and later ver-
sions, it’s “C:\Users.” This value, in combination with the key
name (i.e., the user’s SID), provides a quick and easy means for
associating the long SID to a username [55]. This also allows us
to quickly find if the system was at one time part of a domain
(refer back to the section in this chapter that discussed the
Security hive) because if it was and domain users logged into
the system, then some of the SID key names would be different
(as opposed to just the last set of numbers … the relative iden-
tifier or RID … being different). Further, if the ProfileImagePath
value points to some path other than what is expected, then
that would tell us a couple of things, the first of which would be
where to look for that user profile. The second thing it would tell
us is that someone took steps to modify the default behavior of
the operating system, possibly in an attempt to hide certain user
activity.
The CentralProfile value is discussed in MS KB article 958736

[56]. Research conducted on the Internet (okay… “Googling”)
indicates that the State value may be a bit mask, whose value
provides information regarding the state of the locally cached
profile. However, MS KB article 150919 [57] indicates that this
value has to do with the profile type, which can be changed
through the System Control Panel applet, by going to the
Advanced tab and clicking the Settings button in the User
Profiles section, as shown in Figure 3.29.

Changing Usernames
I’ve seen questions posted to forums where someone has asked how to
determine when a user account name was changed. I’ve been fortunate
in the past and examined systems where auditing for “User Account
Management” was enabled, and found a record in the Event Log that
indicated when the change was made. However, this isn’t always the case.
Another way to determine when this may have occurred would be to
compare the LastWrite time for the user’s key in the SAM (the one with the
user RID in hexadecimal; for the Administrator, 000001F4 = 500) beneath
the SAM\Domains\Account\Users key with the LastWrite time on the
user’s ProfileList key. Changing the user name will cause the appropriate
value in the SAM hive to be modified, and the key’s LastWrite time will
be updated.

140   Chapter 3  Case Studies: The System

Figure 3.29  Changing the User’s Profile Type

Chapter 3  Case Studies: The System   141

UAC
While we’re on the subject of users and user profiles, Microsoft
introduced something called User Account Control (or UAC) with
Windows Vista. In short, this was something of a security mea-
sure, intended to prompt the user whenever something that
might be considered untoward was going to happen; basically,
there was a pop-up whenever something was going to make a
change to the computer. This was intended to be a warning to the
user, to alert them, but it quickly became something of an annoy-
ance to most users and was disabled.
The behavior of UAC is controlled by several settings (value/

data combinations [58]) within the following key within the
Software hive on Vista, Windows 2008, and Windows 7:

Microsoft\Windows\CurrentVersion\Policies\System

Of specific interest is the EnableLUA value; setting this value
to 0 (or adding the DWORD value and then making the value 0)
disables the prompt that appears each time a user attempts to do
something that will make a change to the system.
Interestingly, there are several locations on the Internet that

refer to this particular value as being related to malware or spy-
ware, in particular Troj_Renos.SCMP, which (according to Trend
Micro) disables Windows Defender, as well.

Network Cards
Information about network adapters is also maintained in the
Software hive. Beneath the “Microsoft\Windows NT\Current
Version\NetworkCards” key path, you may see several numbered
subkeys, as illustrated in Figure 3.30.
Each of these subkeys refers to an interface, and the subkey

generally contains two values, ServiceName and Description.

Figure 3.30 W indows XP NetworkCards Key

142   Chapter 3  Case Studies: The System

The ServiceName value refers to the GUID for the interface, and
the Description value contains a description of the interface, as
illustrated in the output of the networcards.pl plug-in below:

Launching networkcards v.20080325
NetworkCards
Microsoft\Windows NT\CurrentVersion\NetworkCards

ADMtek AN983 10/100 PCI Adapter [Mon Sep 30 21:01:28 2002]
Siemens SpeedStream Wireless USB [Sat Apr 22 08:17:30 2006]
1394 Net Adapter [Mon Sep 30 21:02:04 2002]
Instant Wireless USB Network Adapter ver.2.5 [Fri Jan 20
07:30:12 2006]

The output of the plug-in provides an indication of the vari-
ous interfaces on the system; in this case, we can see a PCI
adapter, and two wireless adapters (one of which is USB). This
information can provide an analyst with clues as to where to
look for additional information, as the information from the
Software hive supports that information about network inter-
faces available in the System hive (discussed earlier in this
chapter).

Wireless Connections
The Windows operating system maintains information about
wireless access points to which the system has been connected.
On Windows XP, this information is visible in the Preferred
Networks box in the Wireless Network Connection Properties as
illustrated in Figure 3.31.
How and where this information is maintained and visible

depends on which process or application manages the wireless
network connections. For example, some systems will use the
Dell Wireless WLAN Card utility, and other systems may have
their wireless connections and setting managed by an Intel
application.
Information about wireless connections managed by Windows,

such as those shown in Figure 3.31, can be found in the Microsoft\
WZCSVC\Parameters\Interfaces key. Beneath this key, you will find
a subkey with the GUID for the wireless interface, and beneath that
key you’ll find several values that start with “Static#00xx,” where
“xx” is the number of the connection. Each of these values contains
binary data that appears to be a structure that is very similar to
the WZC_WLAN_CONFIG structure [59] (specific to Windows CE).
The ssid.pl plug-in for RegRipper parses this structure and dis-
plays the SSID of the wireless access point (WAP), its Mac address,
and the date that the system last connected to the WAP, as shown

Chapter 3  Case Studies: The System   143

below (extracted from a Windows XP Software hive using the ssid.pl
RegRipper plug-in):

NIC: 11a/b/g Wireless LAN Mini PCI Express Adapter
Key LastWrite: Thu Feb 7 10:38:43 2008 UTC

Wed Oct 3 16:44:25 2007 MAC: 00-19-07-5B-36-92 tmobile
Mon Oct 8 10:12:46 2007 MAC: 00-16-B6-2F-5B-16 ender

If you open the ssid.pl plug-in in an editor, you’ll see that it
also queries the Microsoft\EAPOL\Parameters\Interfaces key.
In some cases, wireless SSIDs have also been found in this key.
It’s unclear to me as to how they end up there, which process is

Figure 3.31  Wireless Network Connection Properties (XP)

144   Chapter 3  Case Studies: The System

responsible for maintaining this information, or why some sys-
tems have the information while others don’t, but now and again
I’ve found information that has led me to look in other locations
for additional artifacts. An example of the output of the plug-in
from that key appears below:

NIC: 11a/b/g Wireless LAN Mini PCI Express Adapter
LastWrite time: Thu Sep 27 14:59:16 2007 UTC
1 ender
2 tmobile

Beginning with Windows Vista, this information was main-
tained in quite a different manner. This information is now main-
tained in GUID subkeys beneath the Microsoft\Windows NT\
CurrentVersion\NetworkList\Profiles key in the Software hive, as
shown in Figure 3.32.
The values and data within these keys provide a good deal more

information than what is available on earlier systems. For example
there is the profile name, the date that the profile was created (the
first time that the system connected to the WAP), and the last time
that the system was connected to the WAP. These values, and others,
are shown in Figure 3.33.
You’ll notice that the data within the DateCreated and

DateLastConnected values are a bit bigger than we’d expect for
Unix time (32-bit) or FILETIME (64-bit) objects. The data within
these values is actually 128-bit SYSTEMTIME [60] objects. This
is important as it’s yet another time stamp format we have to be
prepared to handle when analyzing Windows systems.

Figure 3.32 W ireless Interface Profile Keys from a Vista System

Chapter 3  Case Studies: The System   145

One piece of data that we don’t see in these values is the WAP
Mac address. If we go back to the Software hive and locate the
Microsoft\Windows NT\CurrentVersion\NetworkList\Signatures
key, we’ll see Managed and Unmanaged subkeys. As the data
for the Managed value shown in Figure 3.33 is 0, we go to the
Unmanaged key, and we’ll find a number of subkeys whose names
are long strings. Within each of these keys, we find additional data
that we can correlate to the data from the Profile key, using the
ProfileGuid value, as shown in Figure 3.34.
I wrote the RegRipper networklist.pl plug-in to access a Vista

or Windows 7 Software hive, and extract and correlate the above
information, an excerpt of which (run against a Vista system
Software hive) is shown below:

Launching networklist v.20090811
Microsoft\Windows NT\CurrentVersion\NetworkList\Profiles
linksys

Figure 3.33  Wireless Interface Values from a Vista System

Figure 3.34  Values from Signature\Unmanaged Subkeys (Vista)

146   Chapter 3  Case Studies: The System

 Key LastWrite : Mon Feb 18 16:02:48 2008 UTC
 DateLastConnected: Mon Feb 18 11:02:48 2008
 DateCreated : Sat Feb 16 12:02:15 2008
 DefaultGatewayMac: 00-0F-66-58-41-ED

ender
 Key LastWrite : Mon Dec 22 04:09:17 2008 UTC
 DateLastConnected: Sun Dec 21 23:09:17 2008
 DateCreated : Tue Sep 11 10:33:39 2007
 DefaultGatewayMac: 00-16-B6-2F-5B-14

ender2
 Key LastWrite : Sat Aug 16 14:53:18 2008 UTC
 DateLastConnected: Sat Aug 16 10:53:16 2008
 DateCreated : Mon Sep 24 22:16:10 2007
 DefaultGatewayMac: 00-15-E9-EA-39-D2

ender2 2
 Key LastWrite : Mon Jan 12 12:42:49 2009 UTC
 DateLastConnected: Mon Jan 12 07:42:49 2009
 DateCreated : Mon Aug 25 19:19:39 2008
 DefaultGatewayMac: 00-21-29-77-D0-2D

The above excerpt from the networklist.pl plug-in output
provides an interesting view into activities on the system with
respect to recording and managing the wireless connections.
First, take a look at the “Key LastWrite” and “DateLastConnected”
values for each profile listed; depending on the time of year, and
the time zone settings (time zone, if daylight savings is enabled),
these times are exactly either 4 or 5h off. Remember, Registry key
LastWrite times are 64-bit FILETIME objects based on GMT/UTC,
and the DateLastConnected values are 128-bit SYSTEMTIME
objects. What this tells us is that when the dates and times are
recorded for DateCreated and DateLastConnected values, the time
zone and daylight savings settings are included in the computa-
tion. This is a very important piece of information for analysts, as
assuming that these values are actually UTC will be incorrect and
can make a mess of your analysis, a time line, and so on.
Second, in the above excerpt, we see two profiles that include

the name “ender2,” and the second one has an additional “2” as
well as a different Mac address. In this case, I know what hap-
pened … the original WAP with the SSID “ender2” had “died,”
and was replaced. Rather than replacing the original information,
Windows (in this case, Vista) created a second profile, and left the
original profile information intact. Understanding or just being
aware of this can be very helpful to an analyst.
So, now we have this data, including a Mac address for the

WAP that the system connected to (as well as a time frame for the

Chapter 3  Case Studies: The System   147

connection) … so what? Well, this information can be very useful
… for example, it can be used in WiFi geo-location; this means
that we can use the WAP Mac address to perform a lookup, spe-
cifically through a company known as Skyhook. This company
has information about WAPs in its database that was appar-
ently collected by war-driving around major metropolitan areas.
Submitting the WAP Mac address to an organization such as this
may return latitude and longitude coordinates, if the informa-
tion is available in the database. This lat–long pair can then be
submitted to Google Maps to see where the WAP was actually
mapped.

In order to demonstrate this capability, I wrote the mac-
lookup.pl script, which is included on the CD that accompanies
this book. This script is not part of RegRipper; instead, it is a
stand-alone script that performs some lookups. Using the “tmo-
bile” SSID and Mac address from the Windows XP example earlier
in this chapter, we can provide the information to the script and
get some information about the WAP:

C:\forensics\maclookup>maclookup.pl -w 00-19-07-5B-36-92 -s tmobile
OUI lookup for 00:19:07:5B:36:92...
 Cisco Systems
 80 West Tasman Dr.
 SJ-M/1
 San Jose CA 95134
 UNITED STATES
Google Map URL (paste into browser):
http://maps.google.com/maps?q=38.9454376,+77.4444653+%28tmobi
le%2 9&iwloc=A&l=en

The first thing the script does is perform a lookup of the
manufacturer of the WAP (based on the Mac address) using the
Net::MAC::Vendor module. The script then submits the Mac
address to skyhookwireless.com using a specified format (based
on a similar script found here [61]). If the Mac address exists in
the SkyHook database and the lat–long pair is returned, the script
creates a URL that you can then copy-and-paste into a browser in
order to see the Google Map with the location of the WAP repre-
sented by a pushpin, as shown in Figure 3.35.

As it turns out, the “tmobile” WAP was, indeed, a Starbucks
store at the Dulles Airport. Again, keep in mind that not every
WAP will have been mapped by a service such as SkyHook
Wireless, so you’re not guaranteed to get usable lat–long coordi-
nates as a response to the query you submit. However, for major
metropolitan areas (i.e., major cities such as Miami, Chicago, Los
Angeles, and so on), it may be well worth a shot. I’ve heard from

148   Chapter 3  Case Studies: The System

analysts who have actually used the WAP information extracted
from systems and been able to demonstrate that employees had
visited competitor sites, and so forth.

MRT
Windows systems that are regularly updated will often have the
Microsoft Malicious Software Removal Tool (or “MRT” [62]), an
antivirus micro-scanner, installed. When I say “micro-scanner,”
what I mean to say is that the MRT is not intended to protect a
system from all malware threats, like a more comprehensive anti-
virus solution. Rather, the MRT is intended to protect the system
against some very specific threats that Microsoft has identified as
the most virulent.
MRT is updated monthly, and some months see only one

update; for July, 2010, there was only an update for Win32/
Bubnix; however, for August, 2010, there were nine updates,
including Stuxnet and several Sality variants. Keep in mind that

Figure 3.35  Google Map for tmobile WAP

Chapter 3  Case Studies: The System   149

the MRT is not an application that will protect a system from vul-
nerabilities, nor will it catch a wide range of malware and spy-
ware. The MRT is intended to only protect a system from some
very specific malware, and when used properly, the information
provided about the MRT by the Registry can provide an analyst
with considerable insight.
MS KB article 891716 [63] provides information about Registry

keys where an analyst can find information to determine when
MRT was last updated, as well as information regarding how to
read the MRT log file. This can be very helpful in determining
malware that may be on a system, or perhaps more appropri-
ately, what malware may not be on a system (I’ve had several
cases where I’ve been told, “we think it’s this virus,” and I have to
set about proving or disproving that assumption, and document-
ing my findings). An analyst can use the mrt.pl RegRipper plug-in
to extract the necessary information from the Software hive.
The MRT should not be confused with Windows Defender,

which is a more comprehensive antispyware solution that comes
installed by default on Windows Vista and Windows 7 systems.
The Software hive (specifically in the “Microsoft\Windows
Defender” key path) provides information about the last time a
scan was run and what type of scan it was; this can be an addi-
tional resource when attempting to determine if a system was
infected, and if so, when.
Again, the sections in this chapter are not meant to be all-

inclusive and completely comprehensive lists of Registry keys
and values that might be of interest during an investigation. Not
every key and value can be discussed and presented; therefore,

Tip
When malware is suspected on a system, one of the steps of my examination process is to mount an acquired image as
a read-only drive letter and scan it with antivirus scanners. Yes, I said “scanners” because I very often use more than
one. However, one of the keys to this is to not use the same application as is already installed on the system. While I
can’t list all of the possible Registry keys used by antivirus scanning applications here (the list is just too long), a quick
look at the file system and the Registry will tell me if the system had an antivirus application installed. Many times, by
the time I receive the system or an acquired image, the local IT staff had already installed and run a (or more than one)
scanner application on the system. Therefore, I include the check, which scanner(s) I opted to use and the results in my
case notes. After all, I don’t think the customer is going to be happy to receive a bill for doing what they already did and
finding the same things.

150   Chapter 3  Case Studies: The System

what I’ve attempted to do is present an overview of different keys
and values that may be of interest during a variety of different
types of investigations. Much of the information I’ve presented
is based on my own experience, while some is based on events
others have shared with me, and still others are based simply on
research. By presenting a range of keys and values that might be
useful, my hope is to convey the importance of the Registry as
a valuable resource during incident response, as well as during
computer forensic analysis.

BCD Hive
On Vista and later systems, there is a BCD hive that contains boot
configuration data, which is to say that it’s a firmware indepen-
dent means for managing boot options, replacing the boot.ini
file that many analysts are used to seeing on Windows 2000 and
XP systems. The BCD allows Windows to take advantage of the
Extensible Firmware Interface (EFI) model found on newer com-
puter systems.
A document at the Microsoft Developer Network (MSDN) site

entitled Boot Configuration Data in Windows Vista provides a
good deal of insight into the contents of the BCD hive file. The file
uses the Registry hive structure, and MS refers to it as a “store”
rather than a hive. However, because it uses the hive structure,
we can open the file in Registry viewers, as shown in Figure 3.36.

Figure 3.36  BCD File Opened in MiTeC RFV

Chapter 3  Case Studies: The System   151

As you can see in Figure 3.36, the various objects listed appear
as GUIDs; many of these GUIDs (and their associated elements)
are named and described in the MSDN document. As described
in the document, the BCDEdit tool (bcdedit.exe) is used by sup-
port personnel and developers to manage and interact with the
BCD store. The BCD is loaded into the Registry when the system is
booted, as shown in Figure 3.37.

Note
Microsoft reuses a lot of file structures; there are a number of applications on Windows 7, for example … such as Sticky
Notes … that save their data files in the OLE or structured storage format. Most of us thought that this was a legacy
format when MS Office file formats were changed and moved away from the use of OLE, but it’s back!

Figure 3.37  RegEdit View of Windows 7 Registry Showing BCD Loaded

152   Chapter 3  Case Studies: The System

The BCD hive/store is visible in Figure 3.37, loaded as
“BCD00000000.” As of this writing, there isn’t a great deal of infor-
mation available as to the forensic usefulness or viability of infor-
mation in the BCD store. As time goes on, I’m sure that additional
information will be developed with regard to using information
available in this hive.

Summary
In this chapter, we’ve taken a good look at the Registry hives
that pertain to the configuration and operation of the system as
a whole, and we’ve seen how there is a good deal of information
available that can be extremely valuable to an analyst during an
examination. In many instances, we’ve also seen how the avail-
able information can be used as or developed into something
more than just technical information, perhaps intelligence that
can be used to support additional analysis and case work.
I’ve attempted to provide a quick snapshot of information

available in the Security, SAM, System, and Software hives; no
volume or tome will ever be able to encapsulate every possible
key, value and setting that could possibly be included in each of
these hives. Rather, I’ve tried to give you, the reader, an overview
of what’s available, including some of the most common entries.
I’ve mentioned some of the Registry keys and values that I, and
other analysts, look toward most often during examinations;
however, that does not mean that these are all the keys and val-
ues that contain pertinent information. In fact, this will never be
the case; there will always be a new application or new version,
or some new malware or technique to compromise a Windows
system that leaves a footprint in the Registry. What I hope I have
done, and continue to do, is to provide you with an appreciation
for how powerful a technique Registry analysis can be, particu-
larly, when used in combination with other analysis techniques,
such as time line analysis. The Windows Registry truly is a verita-
ble treasure chest of data that can be used effectively by a knowl-
edgeable analyst to add a great deal of context to an examination.
Other sources of information will be equally valuable as well,

particularly after this book has been published. For example, an
excellent source of information regarding autostart locations
within the Registry is Microsoft’s own AutoRuns tool. Another
source of information, as Matt Churchill stated in a blog post to
the SANS Forensic blog [64] on 16 August, 2010, is tools designed
to be “evidence cleaners”; apparently, if some settings are impor-
tant enough to be considered “evidence” and deleted, then they
are very likely important to forensic analysts, as well!

Chapter 3  Case Studies: The System   153

Frequently Asked Questions
Q: �How can I find the location of the Task Scheduler log file
through the Registry?

A: �By default, the location of the Task Scheduler log file (i.e.,
SchedLgu.txt) is located in the Microsoft\SchedulingAgent
key in the Software hive, and can be seen in the data for the
LogPath value. On Windows XP, the file is usually located in
the C:\Windows directory; on other versions of Windows,
it’s in the C:\Windows\Tasks directory (you can extract this
information with the schedagent.pl RegRipper plug-in).
Something else that may have an effect on your analysis, spe-
cifically concerning how much information may be available
in the schedlgu.txt file, is the maximum size of the log file [65]
(also extracted through the schedagent.pl plug-in).

Q: �How can I determine, from the Registry, when the system was
last shutdown?

A: �The ControlSet00n\Control\Windows key within the System
hive contains a value named “ShutdownTime,” which is a
64-bit FILETIME object. This time should correspond to the
LastWrite time of the key (which is also a 64-bit FILETIME
object). You can use the shutdown.pl plug-in to extract this
specific value and translate it into something readable.

Q: �How can I determine, from the Registry, when the operating
system was installed.

A: �The installation date of the operating system is maintained
in the Microsoft\Windows NT\CurrentVersion key within
the Software hive. The value is named “InstallDate,” and is a
32-bit DWORD value, meaning that rather than a FILETIME
object, the data is a Unix time. This key also contains a good
deal of other useful data, including the operating system ver-
sion, Service Pack level, and so on. The winnt_cv.pl plug-in
will extract this information for you.

Q: �What are some other ways that malware can maintain persis-
tence on a system?

A: �The list is long … long, but finite. Some other ways to autostart
malware (beyond what’s already been discussed in this chap-
ter) include modifying shell handlers (as described here [66]).
Keep in mind that the HKEY_CLASSES_ROOT hive is actually
a volatile hive, and consists of the Classes keys from the Soft-
ware hive and the logged on user’s hive on a live system. One
example of malware that used this technique was SirCam [67].
Another method is to create a subkey beneath the “Microsoft\
Windows NT\CurrentVersion\Image File Execution Options”
key for a commonly used application and add a Debugger

154   Chapter 3  Case Studies: The System

value that points to the malware (or replace an existing value).
This technique has been used to disable antivirus applications
(as described on the SANS Internet Storm Center blog [68]), as
well as used to launch malware; I’ve seen this technique used
during several engagements. Yet another tricky technique is to
add an entry to the Microsoft\Command Processor\AutoRun
value (in the Software hive; this also works for the Software\
Microsoft\Command Processor\AutoRun value in the user’s
hive). Give it a shot; navigate to the key and add “sol.exe” to the
value, then run a command prompt. Now imagine what would
happen if the value listed wasn’t a nice, pretty GUI application,
but instead some malware that run behind the scenes?

Q: �Can the Registry be used to hide malware in other ways?
A: �Without a doubt. I worked on an engagement with Don
Weber while we were both part of the IBM ISS Emergency
Response Services (ERS) team (as of this writing, Don is with
InGuardians) in which we found that executable image files
were being hidden in binary Registry values! We extracted
the binary contents of the values and were able to perform
static analysis of the files. As a result of this engagement, I
wrote the findexes.pl plug-in, which can be run against any
hive file (including not just the System and Software hives,
but the NTUSER.DAT hive, as well), and attempts to locate
binary values that include “MZ.” We found that in some cases,
the binary data started with bytes other than “MZ,” and when
we stripped those initial bytes from the data, we had what
appeared to be complete executable files. I found this very
interesting, as in an earlier consulting position I had created
a proof-of-concept (PoC) tool that would reach out to the
Internet and download an executable image file “disguised”
as a GIF image, break that file up into blocks, and then write
those blocks to various Registry values. This PoC tool did not
use the WinInet APIs that are native to Windows systems,
thereby minimizing the artifacts left behind by the use of this
tool. There was an associated tool that would then reassem-
ble the executable image file and launch it.

Q: �How can I tell when the system was last booted using just the
Registry?

A: �While the Registry maintains a value called “ShutdownTime”
(the value is found in the ControlSet00n\Control\Windows
key in the System hive), there’s no specific value within the
Registry that says, “this is when the system was last booted.”
What I tend to do is go to the Services key in the System hive,
and check the LastWrite time on keys for services that are
configured to start at system boot. For example, kernel drives

Chapter 3  Case Studies: The System   155

such as atapi.sys, cdrom.sys, and disk.sys will be pertinent to
most systems, and are configured to start at system boot. Cor-
relate this information with other information, such as event
identifiers (IDs) 6005 and 6009 in the Windows 2000, XP, and
2003 System Event Logs.

References
	 [1]	 Security Identifier. Wikipedia, http://en.wikipedia.org/wiki/Security_Identifier.
	 [2]	 How to determine audit policies from the Registry. Microsoft Support.

http://support.microsoft.com/kb/246120 (accessed 01.11.06).
	 [3]	 Offline NT Password& Registry Editor. www.pogostick.net/~pnh/ntpasswd
	 [4]	 How to use the UserAccountControl flags to manipulate user account

properties. Microsoft Support. http://support.microsoft.com/kb/305144
(accessed 03.12.07).

	 [5]	 Live View. http://liveview.sourceforge.net.
	 [6]	 How to use the SysKey utility to secure the Windows Security Accounts Man-

ager database. Microsoft Support. http://support.microsoft.com/kb/310105
(accessed 30.10.06).

	 [7]	 Tarasco Security: Password Dumper – PWDump 7 for Windows.
www.tarasco.org/security/pwdump_7.

	 [8]	 oxid.it – Cain & Abel. www.oxid.it/cain.html.
	 [9]	 LM Hash. Wikipedia, http://en.wikipedia.org/wiki/LM_hash.
	[10]	 NTLM. Wikipedia, http://en.wikipedia.org/wiki/NTLM.
	[11]	 How to prevent Windows from storing a LAN manager hash of your pass-

word in Active Directory and local SAM databases. Microsoft Support.
http://support.microsoft.com/kb/299656 (accessed 03.12.07).

	[12]	 Hacking Case. NIST. www.cfreds.nist.gov/Hacking_Case.html.
	[13]	 How to turn on automatic logon in Windows XP. Microsoft Support.

http://support.microsoft.com/kb/315231 (accessed 10.06.08).
	[14]	 OphCrack. SourceForge. http://ophcrack.sourceforge.net
	[15]	 SAMInside. InsidePro.com. www.insidepro.com/eng/saminside.shtml

(accessed 25.08.10).
	[16]	 L0phtCrack6. L0phtCrack.com. www.l0phtcrack.com.
	[17]	 What are ControlSets? What is CurrentControlSet? Microsoft Support.

http://support.microsoft.com/kb/100010 (accessed 1.11.06).
	[18]	 CurrentControlSet\Services Subkey Entries. Microsoft Support.

http://support.microsoft.com/kb/103000 (accessed 11.12.06).
	[19]	 A description of SvcHost.exe in Windows XP Professional Edition.

Microsoft Support. http://support.microsoft.com/kb/314056
(accessed 10.12.07).

	[20]	 SANS Computer Forensic Investigation and Incident Response. http://blogs
.sans.org/computer-forensics

	[21]	 TrueCrypt. www.truecrypt.org.
	[22]	 Windows 7, Windows 2008 R2, and Windows Vista setup log file locations.

Microsoft Support. http://support.microsoft.com/kb/927521 (accessed
15.3.07).

	[23]	 Microsoft Word bites Tony Blair in the butt. www.computerbytesman
.com/privacy/blair.htm.

	[24]	 Registry Entries for Printing. Microsoft Support. http://support.microsoft
.com/kb/102966 (accessed 26.11.07).

156   Chapter 3  Case Studies: The System

	[25]	 Windows Firewall. Microsoft TechNet. http://technet.microsoft.com/en-us/
network/bb545423.aspx.

	[26]	 FakeAlert-Winwebsecurity. McAfee. http://vil.nai.com/vil/
content/v_153577.htm.

	[27]	 Trojan-Proxy.Win32.Mitglieder.ee. SecureList. www.securelist.com/en/
descriptions/old126765.

	[28]	 Exploring the windows firewall. Microsoft TechNet. http://technet.microsoft
.com/en-us/magazine/2007.06.vistafirewall.aspx.

	[29]	 The “netsh firewall” command together with the “profile=all” parameter does
not configure the public profile on a Windows Vista-based computer. Microsoft
Support. http://support.microsoft.com/kb/947213 (accessed 1.02.08).

	[30]	 How to use the “netsh advfirewall firewall” context instead of the “netsh
firewall” context to control Windows Firewall behavior in Windows Server
2008 and in Windows Vista. Microsoft Support. http://support.microsoft
.com/kb/947709 (accessed 5.12.08).

	[31]	 Microsoft TCP/IP Host name resolution order. Microsoft Support.
http://support.microsoft.com/kb/172218.

	[32]	 ‘P’ Switch for route command added to Windows, Microsoft Support.
http://support.microsoft.com/kb/141383 (accessed 20.02.07).

	[33]	 NtfsDisableLastAccessUpdate. Microsoft Technet. http://technet.microsoft
.com/en-us/library/cc758569%28WS.10%29.aspx.

	[34]	 NtfsDisable8dot3NameCreation. Microsoft TechNet. http://technet.microsoft
.com/en-us/library/cc959352.aspx.

	[35]	 How to clear the Windows paging file at shutdown. Microsoft Support.
http://support.microsoft.com/kb/314834 (accessed 20.07.10).

	[36]	 Internet Explorer file downloads over SSL do not work with the cache control
headers. Microsoft Support. http://support.microsoft.com/kb/323308
(accessed 15.11.07).

	[37]	 HTTP/1.1 Header Field Definitions. W3.org. www.w3.org/Protocols/rfc2616/
rfc2616-sec14.html.

	[38]	 Robert Hensing’s Blog. Microsoft TechNet Blogs. 15 November 2006,
http://blogs.technet.com/b/robert_hensing.

	[39]	 Definition of the RunOnce Keys in the Registry. Microsoft Support.
http://support.microsoft.com/kb/137367 (accessed 19.01.07).

	[40]	 Registry changes in x64-based versions of Windows Server 2003 and in
Windows XP Professional x64 Edition. Microsoft Support. http://support
.microsoft.com/kb/896459 (accessed 21.04.08).

	[41]	 Registry keys affected by WOW64. Microsoft Developer Network.
http://msdn.microsoft.com/en-us/library/aa384253%28VS.85%29.aspx.

	[42]	 INFO: Run, RunOnce, RunServices, RunServicesOnce and Startup. Microsoft
Support. http://support.microsoft.com/kb/179365 (accessed 21.11.06).

	[43]	 Registry Entries. Microsoft Developer Network. http://msdn.microsoft.com/
en-us/library/aa379402%28VS.85%29.aspx.

	[44]	 Generic Downloader.z!1516DDBD. McAfee. http://vil.nai.com/vil/
content/v_149604.htm.

	[45]	 How to debug Windows Services. Microsoft Support. http://support.microsoft
.com/kb/824344.

	[46]	 How to turn off the Windows Update feature in Windows XP. Microsoft
Support. 28 January 2005, http://support.microsoft.com/kb/892894
(accessed 28.01.05).

	[47]	 Using image file execution options as an attack vector on Windows.
http://silverstr.ufies.org/blog/archives/000809.html, 2005.

	[48]	 A new CWDIllegalInDllSearch registry entry is available to control the DLL
search path algorithm. Microsoft Support. http://support.microsoft.com/
kb/2264107 (accessed 24.08.10).

Chapter 3  Case Studies: The System   157

	[49]	 Dynamic-Link Library Search Order. Microsoft Developer Network.
http://msdn.microsoft.com/en-us/library/ms682586

	[50]	 Malware Persistence without the Windows Registry. Mandiant.com blog,
15 July 2010, http://blog.mandiant.com/archives/1207.

	[51]	 REG: CurrentControlSet Entries PART 2: SessionManager. Microsoft Support.
http://support.microsoft.com/kb/102985 (accessed 1.11.06).

	[52]	 INFO: Windows NT/2000/XP Uses KnownDLLs registry entry to find DLLs.
Microsoft Support. http://support.microsoft.com/kb/164501 (accessed
21.11.06).

	[53]	 User Profile Structure. Microsoft TechNet. http://technet.microsoft.com/
en-us/library/cc775560%28WS.10%29.aspx.

	[54]	 Well-known security identifiers in Windows operating systems. Microsoft
Support. http://support.microsoft.com/kb/243330 (accessed 12.01.10).

	[55]	 How to Associate a Username with a Security Identifier (SID). Microsoft
Support. http://support.microsoft.com/kb/154599 (accessed 27.02.07).

	[56]	 The “Set roaming profile path for all users logging onto this computer”
Group Policy setting also applies to local user accounts in Windows
Server 2008. Microsoft Support. http://support.microsoft.com/kb/958736
(accessed 21.10.08).

	[57]	 How to Prevent a User from Changing the User Profile Type. Microsoft
Support. http://support.microsoft.com/kb/150919 (accessed 21.02.07).

	[58]	 2.2.11 User Account Control. Microsoft Developer Network. http://msdn
.microsoft.com/en-us/library/cc232771%28v=PROT.10%29.aspx.

	[59]	 WCZ_WLAN_CONFIG. Microsoft Developer Network. http://msdn.microsoft
.com/en-us/library/aa448338.aspx.

	[60]	 SYSTEMTIME. Microsoft Developer Network. http://msdn.microsoft.com/
en-us/library/aa908737.aspx.

	[61]	 Unnamed, Perl script by Joshua D. Abraham, http://spl0it.org/files/
bssid-location.pl.

	[62]	 The Microsoft Windows Malicious Software Removal Tool helps remove
specific, prevalent malicious software from computers that are running
Windows 7, Windows Vista, Windows Server 2003, Windows Server 2008, or
Windows XP. Microsoft Support. http://support.microsoft.com/?kbid=890830.

	[63]	 Deployment of the Microsoft Windows Malicious Software Removal Tool in an
enterprise environment. Microsoft Support. http://support.microsoft.com/
kb/891716.

	[64]	 SANS Computer Forensic Investigation and Incident Response. SANS
Forensic Blog. 16 August 2010, https://blogs.sans.org/computer-forensics.

	[65]	 How to limit the maximum size of the Scheduled Tasks Log File. Microsoft
Support. http://support.microsoft.com/kb/169443 (accessed 3.12.07).

	[66]	 Changes to Shell Open Command. About.Com: AntiVirus Software.
http://antivirus.about.com/od/windowsbasics/a/shellopen.htm

	[67]	 You cannot start programs when your computer is infected with the
SirCam virus. Microsoft Support. http://support.microsoft.com/kb/311446
(accessed 29.03.07).

	[68]	 Abusing Image File Execution Options. SANS Internet Storm Center blog.
28 February 2008, http://isc.sans.edu/diary.html?storyid=4039.

This page intentionally left blank

159Windows Registry Forensics. DOI: 10.1016/B978-1-59749-580-6.00004-8
© 2011 Elsevier Inc. All rights reserved.

4
Case Studies: Tracking User
Activity

Information in This Chapter

•	 Tracking User Activity

•	 Scenarios

Introduction
When first I sat down to write this book, it occurred to me that
this chapter … one about tracking user activity … might be the
most useful and interesting chapter. Windows does a great job of
providing a quality experience to the user and keeping track of
documents they had opened, saved, or accessed, how they had
set up and configured their favorite Solitaire game, which Web
browser they used, which application is launched when the user
double-clicks a file in the shell, and even the size and position of
various application windows on the desktop. All of this informa-
tion has to be tracked somehow, and for the most part, a great
deal of it is tracked through the user’s Registry hive files. The fact
that this information is recorded in any manner at all is transpar-
ent to the user, but for a knowledgeable analyst, the Registry, and
in particular the user’s hives, can be veritable treasure trove of
forensic data.

In Chapter 3, “Case Studies: The System,” we discussed
several of the Registry hives that pertain most directly to the
system: the SAM, Security, System, and Software hives. In this
chapter, we will be focusing primarily on two hives found within
the User Profile directory: the NTUSER.dat hive and the lesser-
known USRCLASS.dat hive. These two files, to varying degrees
based on the version of Windows being examined, can provide
a great deal of data regarding the user’s activities on a system. In
this chapter, we’re going to take a look at the various ways this

160   Chapter 4  Case Studies: Tracking User Activity

information can be used, and more importantly, how it can be
used effectively to support a number of types of investigations.

As with the previous chapter, this chapter should not be
considered a comprehensive and complete list of all possible
Registry keys and values that might be considered important or
valuable to an analyst. Although Windows XP systems are fairly
well-understood, there is still a lot about Vista systems, and now
Windows 7 systems, that require a great deal of research, particu-
larly in the area of Registry analysis. Add to that the proliferation
of applications on these systems, and there’s an apparent never-
ending supply of Registry locations that can be of value, includ-
ing (but not limited to) used by malware to maintain persistence
on the system. Rather than providing a long list of Registry keys
and values of interest, it’s more important to understand how
some keys and values can be used, not only by an intruder or
malware author but more so by a forensic analyst in order to
paint a more complete picture of an examination. Understanding
how the user hives can be used is far more important than main-
taining a long list of keys and values that don’t have any context
or anything to indicate how they’re important.

A final thought before we head into this chapter, as with previ-
ous chapters: the most important aspect of Registry analysis is to
first understand your goals and what you are looking for or trying
to demonstrate or prove. Many analysts kick off an examination
by loading Registry hives into a viewer, without really under-
standing what it is they’re looking for; this will often result in “no
findings” and a great deal of time spent finding this out. If you
understand what you’re interested in and what you’re looking for,
you can not only find it very quickly but the absence of those arti-
facts is itself an artifact, and can often tell you much more about
the user activity.

RegRipper Plug-ins
Throughout this chapter, as with Chapter 3, “Case Studies: The System,”
I’ll be referring to a number of RegRipper plug-ins, particularly when
discussing some Registry key or value of interest. Don’t forget that we
discussed in Chapter 2, “Tools,” the use of rip.pl (or the .exe version),
as well as the “Plug-in Browser” tool, to see the available plug-ins and
what they’re meant to do. I haven’t discussed all of the plug-ins that are
available on the CD that accompanies this book … as of this writing,
there are 171 plug-ins. Some of the plug-ins are “twins,” which means
that they are based on other plug-ins and closely related, but slightly
different in some small way (i.e., a small change in how the output is
formatted, etc.). Feel free to browse through the plug-ins with either of
the available tools, or open them in Notepad, and even use the ones that
are available to write some plug-ins of your own!

Chapter 4  Case Studies: Tracking User Activity   161

Tracking User Activity
The traditional approach to computer forensic analysis has relied
heavily on file system time stamps and a few other artifacts (file
contents) found on the system. However, systems are now often
accessed via multiple user accounts, and the scope of many
investigations has expanded beyond the boundaries and hard
drive of just one system. Further, there are times when an ana-
lyst cannot trust file system time stamps, as either the updating
of file last access times is disabled, or an intruder (or malware)
modified those time stamps. As such, we need to look to other
locations within the system to develop a better understand-
ing of activity associated with a user account. The best place
to start is within the Registry hive files within the User Profile;
there is the well-known NTUSER.dat hive found in the root of
the profile directory, and with more recent versions of Windows
(Vista, Windows 7), the USRCLASS.dat hive is seeing greater
usage. In this chapter, we’ll focus on discussing and demonstrat-
ing how activity associated with a user account (“user activity”)
is recorded in the user’s hives and how analysts can use that
information to the benefit of their examinations.

MRU Lists
The first thing I’d like to discuss is the concept of a “most recently
used” list. A number of values (and keys) are maintained in the
user’s Registry hive as a “most recently used,” or “MRU,” list.
What this means is that there is some sort of ordered number-
ing scheme that is used to track the entries, and in the case of
some values, there may also be another value named MRUList or
MRUListEx that will tell you the order of the MRU values. In some
cases, the values are given numbers as names (“0000,” “0001,”
and so on) as they are added to the key; the most recent value is
named 0000, and when the next value is added, it is named 0000
and the previous value is “pushed down” to “0001,” and so on.
This way, looking at the value names, you can get a very quick
view of the order in which the values were added, and there is no
need for an MRUList (or MRUListEx) value.
In other instances, the values are assigned numbers as names

(which may begin with the letters “MRU,” depending upon the
key and the application that uses them), and there will be an
additional value named MRUList or MRUListEx that maintains
the order in which the values were “used” (again, this depends
upon the application). For example, consider a Registry key for
which the first value added is named simply “a.” At this point,

162   Chapter 4  Case Studies: Tracking User Activity

the MRUList value would indicate that the “a” value was the most
recently used value. At some point, several other values (b, c,
and so on) are added, and the MRUList value indicates the order
accordingly (c, b, a). However, at some point, the user does some-
thing that reuses the first value (conducts a search for the same
keyword, accesses the file, and so on); the MRUList value would
now indicate that the MRU order is now “a,” “c,” “b.” Even though
all of the values keep their original names, the MRUList value
indicates the order in which the values were “used.”
Throughout the rest of this chapter, we’ll encounter several

Registry keys that maintain MRU lists. In each instance, we’ll dis-
cuss how to interpret those specific values and how the values as
a whole can be of use during an examination.

Run
As discussed in Chapter 3, “Case Studies: The System,” there are a
number of Registry keys in the user hive that have the same name
and path as keys in the Software hive. In some cases, as with
applications, the keys in the user hive will maintain user-specific
information, such as settings and MRU lists of accessed files, and
so on, whereas the keys in the Software hive will maintain over-
all application configuration information. In other instances,
the contents of the key within both hives are very similar and
serve the same function, but those in one hive will supersede the
values in the other hive.
The Run key is one of the latter. All of the available documen-

tation at the Microsoft Web site indicates that when a user logs
into a system, the contents of the Run key within the Software
hive are run, and then the contents of the Run key within the
user’s hive are run; however, the entries within each key are
run asynchronously, that is, in no particular order. The Run key
within the user’s hive is located in the following path:

Software\Microsoft\Windows\CurrentVersion\Run

One would think that after all this time, this particular key
(and its counterpart in the Software hive) would no longer be
quite as popular as they once were; however, nothing could be
further from the truth. There are still a number of malware vari-
ants that rely on this key for persistence. In fact, on a recent
engagement (during the summer of 2010), I examined a sys-
tem that had been infected, not once but twice, by a bit of mal-
ware that used the user’s Run key for persistence. I found two
values in the user’s Run key that pointed to different malware
files that were later found to be different variants of the same

Chapter 4  Case Studies: Tracking User Activity   163

malware family. Also, a friend of mine who primarily conducts
forensic exams as a result of Payment Card Industry (PCI)
data breaches has seen a good number of instances where the
“Perfect Keylogger” is installed on systems; this tool maintains
persistence by writing to the Run key in the Software hive. This
indicates that for some, this key (regardless of the hive) is still a
popular persistence mechanism.

RunOnce
In addition to the Run key, there’s also the RunOnce key … as the
note indicates, entries in this key are run once. In fact, the data for
each value is a command line, and by default, is deleted before the
command is run; however, the deletion of the value can be deferred
until after the command is run by prepending the value name with an
exclamation point. You can also force the associated command within
the RunOnce key to be run in Safe Mode (the contents of both the Run
and RunOnce keys are ignored if the system is booted in Safe Mode) by
prepending the name with a star (*). This is all documented in MS KB
article 314866 [1].
Something else to consider is that this makes an excellent persistence

mechanism. Imagine a piece of malware that included a mechanism,
run either when the process is terminated or another designated time,
to create an entry in the RunOnce key, rather than in, say, the Run key.
When the system starts, the persistence mechanism would activate,
but the system itself would delete the entry. However, the entry would
be recreated at a designated time or based on a specific trigger, which
would then allow the malware to be initiated again at the next system
start. This possibility is an excellent example of why responders and
analysts must be knowledgeable and take special care when acquiring
and analyzing data. It’s also an example of how analysts need to beware
of becoming complacent during examinations; just because you haven’t
seen or heard of a particular persistence mechanism being used doesn’t
mean that it won’t be used.

Programs can be configured via group policies to run
when a user logins onto the system, as well. If an administra-
tor goes to the Group Policy console and selects Computer
Configuration | Administrative Templates | System | Logon
(or the corresponding User settings), the programs added here
will be added to the Microsoft | Windows | CurrentVersion |
Policies | Explorer | Run key within the Software hive, or to the
corresponding key within the user’s hive, respectively (with the
path the key in the user’s hive prepended with “Software\,” of
course).
This can also be set up on a stand-alone system through the

Local Security Policy, as illustrated in Figure 4.1.

164   Chapter 4  Case Studies: Tracking User Activity

You should have noticed in Figure 4.1 that there’s an addi-
tional setting called Do not process the legacy run list ; there is
also a corresponding setting within the User Configuration set-
tings (User Configuration | Administrative Templates | System
| Logon), and both of these refer to the respective Windows |
CurrentVersion | Run keys. However, both Run keys (the “policy”
and the “legacy” Run keys) are still used quite often by malware
as persistence mechanisms. In fact, on August 19, 2010, the
SpywareRemove Web site published a definition for malware
named Backdoor.Beastdoor.206 that uses the “policies” Run key
for persistence (that is, installs as a value named COM service).
Now, these keys do not directly relate to user activity; rather, the

contents of these keys can help you understand what other applica-
tions may have been running within the user context on the system.
The purpose of identifying these keys and their contents, particularly
during incident response or digital forensics analysis, would be to
understand if the user purposely took specific actions that led to the
issue (unusual or suspicious traffic observed on the network, and so
on), or if the identified issue was due to some other processes at work,
whether they are legitimate applications or malware. Understanding
and examining malware persistence mechanisms (particularly those
within the Registry) can also assist in addressing the “Trojan Defense,”
which we will discuss further later in this chapter.

Figure 4.1  Windows XP Local Security Policy

Chapter 4  Case Studies: Tracking User Activity   165

Temporal Proximity
The term temporal proximity is a Star Trek-y kind of term I first heard
used in the fall of 2008 by Aaron Walters (of Volatility fame), and it
refers to when response activities start in relation to the incident hav-
ing occurred. I bring this up because keys such as the RunOnce key can
really illustrate the importance of temporal proximity, as well as rapid
incident detection and response. Something that differentiates the
RunOnce key from the Run key is that items listed in the RunOnce key
are run once. Any command line listed as a value beneath this key will
be run the next time a user logs into the system and be deleted (before
or after being run, per our previous explanation). The value of temporal
proximity is also illustrated by issues such as deletions; when a Registry
key is deleted, the space used by the key becomes part of the unallocated
space of the hive file and may be reused (that is, overwritten) at some
point (the same concept that applies to files in the file system). The
sooner the response activities are initiated, the more likely you are to
have access “fresh” data.

USB Devices
In Chapter 3, “Case Studies: The System,” we discussed tracking
the use of USB devices (thumb drives, wallet drives, and larger
drive enclosures connected via USB) on the system. It turns
out that we can also track which user accessed those drives and
when those drives were last accessed. According to research
conducted by Rob Lee (of Mandiant and SANS fame) and pub-
lished through the SANS Forensic blog, on Windows XP systems,
the MountPoints2 key in the user hive will tell you which user
accessed the devices, and the LastWrite time for that key will tell
you when the device was last connected to the system. According
to Rob’s findings, this will work for thumb drives (but apparently
not drive enclosures) on Vista and Windows 7 systems, as well.
The full path to the key in question is

Software\Microsoft\Windows\CurrentVersion\Explorer\
MountPoint2

Beneath this key are a number of long strings of numbers
and letters that start and end with curly brackets; these are
globally unique identifiers, or GUIDs (goo-idz). These are, in
fact, the same GUIDs that are found in the MountedDevices key
within the System hive. In Chapter 3,“Case Studies: The System,”
of this book, we discussed how the contents of this key can be
used. The values within this key that start with “\??\Volume”
and end in GUIDs refer to the volumes that were mounted on
the system. For example, using the mountdev.pl RegRipper

166   Chapter 4  Case Studies: Tracking User Activity

plugin, we are able to extract the following information from the
System hive:

Device: \??\STORAGE#RemovableMedia#7&326659cd&0&RM#{53f5630d-
b6bf-11d0-94f2-00a0c91efb8b}

 \??\Volume{567720f4-fff4-11db-ba6a-0016cf5d56b8}
 \DosDevices\E:

From this information, we see that the volume GUID refers
to a removable storage device that was mounted as the E:\
drive on the system. Running the mp2.pl RegRipper plugin
against the user’s NTUSER.dat hive, we can extract the following
information:

Thu Feb 7 13:37:11 2008 (UTC)
 {567720f4-fff4-11db-ba6a-0016cf5d56b8}

Now, both of these pieces of information are just excerpts of
the full output of the plug-ins used, but they serve to demon-
strate how the information can be used to establish a time line of
when the device was last connected to the system and by which
user. Again, according to Rob Lee’s research, this is specific to
Windows XP systems.

XPMode
With the release of Windows 7, Windows XP does not completely go
away. Although some large organizations are looking at moving their
users, a few at a time, to Windows 7, Windows XP is still very pervasive.
On top of that, in order to insure that older applications can still be run
on Windows 7, a special version of Windows XP called XPMode can be
installed to provide a virtualized Windows XP environment for running
those applications. In short, the user installs the application in XPMode
and the icon for the application appears on the Windows 7 desktop.
When the user double-clicks the icon, XPMode is automatically started.
What this means for forensic analysts is that there may be sources of
information or indicators in the XPMode environment that are not read-
ily apparent in the Windows 7 environment, so keeping those analysis
skills for Windows XP systems sharp will continue to be important for
the foreseeable future.

Searches
Users will often search for things (files by name, keywords within
files, and so on) on their systems, as well as on other systems, and
on the Internet. Sometimes, they even do this using the built-in
search capability that comes with Windows XP, as is illustrated in
Figure 4.2.

Chapter 4  Case Studies: Tracking User Activity   167

When a user runs a search on Windows XP, the information
about what is being searched for is maintained in the following
Registry key:

Software\Microsoft\Search Assistant\ACMru

Beneath this key are several subkeys, each of which is
named for a number, and each of these numbers corresponds
to a particular portion of the Search Assistant, as indicated as
follows:
•	 5001 Contains list of terms entered via the “On the Internet …”
search

•	 5603 Contains list of terms entered via the Windows XP “For
Files or Folders …” search

•	 5604 Contains list of terms searched for using the “A word or
phrase in the file” search

•	 5647 Contains list of terms searched for using the “Computers
or people” search
Figure 4.3 illustrates the portion of the Search Assistant in

which entries populate the 5603 and 5604 keys, respectively.
I have found this information has proven to be very use-

ful during a number of examinations. For example, the values
beneath these keys are also numbered in an MRU fashion: 000,
001, 002, and so on. Therefore, the LastWrite time for the key
itself lets us know when the search for the “000” value was con-
ducted. Sometimes I find entries that are entirely normal for a
particular user; in other cases, perhaps not so much. For exam-
ple, I’ve seen where someone who had no business doing so was
searching for terms such as banking and passwords. I’ve also seen
where someone has perhaps had trouble spelling, searching for
“bankign.”

Figure 4.2 W indows XP Search

168   Chapter 4  Case Studies: Tracking User Activity

On Vista systems, information about searches run by the
user is maintained in a file, and not within a Registry key. With
Windows 7, information about what the user searched for is
again recorded in the Registry, this time in the WordWheelQuery
key. The full path to this key appears as follows:

Software\Microsoft\Windows\CurrentVersion\Explorer\
WordWheelQuery

Figure 4.4 illustrates how the contents of this key appear in
Windows Explorer on Windows 7.
The values within the WordWheelQuery key are binary data

types that are numbered (“0,” “1,” and so on), and there is also
an MRUListEx value that is also a binary data type. As with many
MRUListEx values, the MRU list is maintained as 4-byte DWORD
values in sequence, with the value 0 × FFFF indicating the end
of the list. As with the Windows XP ACMru key, the information
in this key may shed some light as to the user’s activity on the
system.

Figure 4.3  Windows XP Search Assistant to ACMRu Subkey Mappings

Chapter 4  Case Studies: Tracking User Activity   169

Time Stamps
Time stamps (key LastWrite times, time stamps in binary or string
values) can be fairly important and revealing during analysis, particu-
larly when the analyst creates a time line of activity from various data
sources. I’ve seen instances where a user (specifically, an administrator)
has had their credentials compromised, and the intruder accessed sys-
tems that the legitimate administrator had previously accessed. Many
times, an intruder will access a lot of the same utilities and programs as
an administrator, such as the Microsoft Management Console (MMC),
or the Control Panel, and so on. So what will happen is that the analyst
will see a good deal of activity that appears normal, but occurred after
the date of compromise and was a result of the intruder’s activities.
So, when looking at values, particularly MRU lists, such as RunMRU,
TypedUrls, or values regarding searches, it is important to note not
only the entries and values but also the time stamps associated with
those values.

RecentDocs
Microsoft Windows does a very good job of tracking what docu-
ments a user has accessed, making them available in the Recent
Documents menu, as illustrated in Figure 4.5.
This list of documents can be very revealing about a user’s

activities. In most cases, such as in a corporate environment,
the documents listed here will be legitimate, business-oriented

Figure 4.4  Windows 7 Search History

170   Chapter 4  Case Studies: Tracking User Activity

documents. However, even in such environments, users may
be found accessing documents that they shouldn’t. Information
about the documents that the user has accessed is maintained in
the RecentDocs key, which is found in the following path:

Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs

An example of RecentDocs key, as well as the subkeys and val-
ues, from a Windows XP system is illustrated in Figure 4.6.

Figure 4.5  Windows XP Recent Documents Menu Listing

Chapter 4  Case Studies: Tracking User Activity   171

As you can see in Figure 4.6, the RecentDocs key itself con-
tains numbered values (0, 1, and so on) that each contain binary
data, as well as subkeys named for the various extensions of the
files accessed. Each of these subkeys also contains numbered
values with binary data, as well. All of these keys contain a value
named MRUListEx, which is a sequence of DWORD values that
list the order in which the documents or files were accessed. Vista
and Windows 7 record this information in the same way, and the
recentdocs.pl RegRipper plugin can be used to parse the neces-
sary information from the binary value data on all versions of
Windows. An example of information retrieved by the recent-
docs.pl plugin from a Windows 7 system appears as follows:

Software\Microsoft\Windows\CurrentVersion\Explorer\
RecentDocs\.jpeg

LastWrite Time Sat Mar 13 22:25:46 2010 (UTC)
MRUListEx = 2,1,0
  2 = anime_155.jpeg
  1 = 11.ca2.jpeg
  0 = roripara22_png.jpeg

Software\Microsoft\Windows\CurrentVersion\Explorer\
RecentDocs\.jpg

LastWrite Time Tue Mar 16 15:43:58 2010 (UTC)
MRUListEx = 3,1,2,8,9,4,0,6,5,7
  3 = Picnik collage.jpg

Figure 4.6  View of RecentDocs Key/Values via RegEdit.exe

172   Chapter 4  Case Studies: Tracking User Activity

   1 = hether-446.jpg
  2 = 09.jpg
  8 = 1211720515959.jpg
  9 = 016.jpg
  4 = 25517_1260411908194_1166566081_30636671_8251529_n.jpg
  0 = 25517_1260297105324_1166566081_30636173_6335083_n.jpg
  6 = 25517_1260297145325_1166566081_30636174_7038891_n.jpg
  5 = 25517_1260297185326_1166566081_30636175_5223984_n.jpg
  7 = 25517_1260297225327_1166566081_30636176_4397882_n.jpg

This example illustrates the user’s access to .jpeg and .jpg files;
in short, images. One thing you’ll notice is that the plug-in parses
the MRUListEx value and then presents the files in the order in
which they are listed in that value. Based on how the contents
of these keys are maintained, we can that “anime_155.jpeg” was
accessed on Saturday, March 13, 2010 at approximately 22:25:46
(UTC) and that “Picnik collage.jpg” was accessed on Tuesday,
March 16, 2010 at approximately 15:43:58 (UTC).

What application uses or created that file?
Many times while I’m perusing online forums, I’ll see a question similar
to, “what application is used to access/created this file?” Most of the
time, the response is a reference to a Google search (or even a URL for
lmgtfy.com) or to fileext.com. This may seem like the obvious answer,
but it’s not someplace I’d start. When I see a file extension listed on a
file in an image, or in the RecentDocs key in the user’s hive and I’m
interested in determining the application that is associated with that file
extension on the system, I’ll run the assoc.pl RegRipper plugin against
the Software hive (via rip.pl/.exe), redirect the output to a file, and then
look to see what may be listed in the output file. This allows me to deter-
mine the file associations on that system; searching for this information
via Google, while it may be useful, does not address the context of what
applications are installed on the system being analyzed. The output
of the assoc.pl plugin can also tell me about installed applications; for
example, on a Windows 7 system, I found that all of the graphics files
(.jpg, .img, .tif, and so on) were associated with the IrfanView applica-
tion. So, not only did I now know that IrfanView was installed but I now
had another application to check for an MRU list of opened or saved
files. From this same system, I also found that OpenOffice was installed
rather than Microsoft Office. Searching via Google may provide useful
leads, but examining artifacts on the system being examined will many
times provide much-needed context.
However, this information applies to the system itself; file association

settings from the User Profile (found in the user’s USRCLASS.dat hive)
will supersede the system settings when the user logs in. This is
covered in more detail in the “File Associations” section later in this
chapter.

Chapter 4  Case Studies: Tracking User Activity   173

We can see from this that the values beneath the RecentDocs
key and its subkeys will tell us what documents and files the
user account was used to access (I say that, because that’s all
we know … we don’t really know who was at the keyboard when
the account was logged in …), as well as when the most recently
access document was accessed (via the first item in the MRUListEx
value and the key LastWrite time). A closer look at the binary data
for the various values shows us the filename and a referenced
Windows shortcut (.lnk) file, but not the full path to the file itself,
so we don’t know if the file was on the local hard drive, on a CD,
on a thumb drive attached to the system or on a network share.
In order to determine where the file originally existed, we can go to
the application itself and see if it maintains an MRU list of its own.
For example, while I was writing this chapter in MS Word 2007,
I clicked on the Windows icon in the upper left hand corner of the
application window and saw what was illustrated in Figure 4.7.

Figure 4.7  MS Word 2007
Document MRU List

174   Chapter 4  Case Studies: Tracking User Activity

Many graphical user interface (GUI) applications on Windows
systems maintain a similar list (you should note that Notepad
does not maintain such a list) of recently accessed files. Another
example of an application (in this case, MS Paint) MRU list is
illustrated in Figure 4.8.

Figure 4.8  MS Paint MRU List

Chapter 4  Case Studies: Tracking User Activity   175

As you can see in Figure 4.8, while I was writing this chapter
(actually, this entire book), I would capture an image and use MS
Paint to save the image in a TIFF format for inclusion in the book.
Many other applications maintain similar lists, as illustrated in
Figures 4.9 and 4.10.
Figure 4.9 illustrates the recently accessed files for Windows

Media Player, while Figure 4.10 illustrates a similar file listing for
Adobe Reader. As is often the case, these lists are maintained dif-
ferently depending upon the application. For Windows Media
Player, the list of files is maintained in the following key:

Software\Microsoft\MediaPlayer\Player\
RecentFileList

Figure 4.9  Windows Media Player Recently Accessed Files

176   Chapter 4  Case Studies: Tracking User Activity

The values beneath this key are named File0, File1, File2, and
so on, with File0 being the most recently accessed file. The file-
names are Registry string values and need no special parsing or
interpretation, and as each new file is added to the list, it is writ-
ten to the File0 value, and the other files are pushed down (that

Figure 4.10  Adobe Reader File Menu Showing Recently Accessed Files

Chapter 4  Case Studies: Tracking User Activity   177

is, the original File0 becomes File1, and so on). The mpmru.pl
RegRipper plugin will parse the RecentFileList key for the list of
Windows Media Player recently accessed files.

DisableMRU
Windows Media Player has a value named DisableMRU beneath the
Software | Microsoft | MediaPlayer | Preferences key that, by default, is
set to “0.” If this value is set to “1,” the list of recently accessed files will
no longer be maintained. We discussed earlier in this book how a lack of
artifacts can itself be an artifact; in this case, the lack of values beneath
the RecentFileList key doesn’t necessarily mean that no media files were
accessed. Correlate the key LastWrite time with other data to see if there
are indications that the values were deleted, but also check the Disa-
bleMRU value to see if an MRU list is being maintained.

For Adobe Reader (version 9.0, in this case), the list of accessed
files is maintained below the following key:

Software\Adobe\Acrobat Reader\9.0\AVGeneral\cRecentFiles

Beneath this key are several subkeys whose names start with
the letter “c” and are numbered (1 through 5, on my test system).
If you like, open the Registry Editor (on a live system) or RFV to
view an NTUSER.dat hive file from a system with the Adobe
Reader installed and follow along. Within each of these keys are
several values; the value named sDI is a binary value that con-
tains the name of the accessed file, and the tDIText value con-
tains the filename in ASCII text. Each time a new file is accessed
and added to the list that new file replaces the information in the
c1 subkey, and each subsequent file gets pushed down one … the
original c1 becomes c2, and so on. Therefore, under normal cir-
cumstances, all of the subkeys beneath the cRecentFiles key can
be expected to have the same LastWrite time. The adoberdr.pl
RegRipper plugin will attempt to determine the installed version
of Adobe Reader and then obtain a list of recently accessed files
from the cRecentFiles key, as shown below:

Launching adoberdr v.20100218
Adoberdr v.20100218
Adobe Acrobat Reader version 8.0 located.
Software\Adobe\Acrobat Reader\8.0\AVGeneral\cRecentFiles

Most recent PDF opened: Thu Feb 7 10:59:54 2008 (UTC)
  c1 /C/DOCUME~1/Harlan/LOCALS~1/Temp/CSD2007_Volatatile_Memory_

Forensics.pdf
  c2 /C/DOCUME~1/Harlan/LOCALS~1/Temp/w_search_1098_print-1.pdf
  c3 /C/Documents and Settings/Harlan/Desktop/tbw1098.pdf

178   Chapter 4  Case Studies: Tracking User Activity

  c4 /C/DOCUME~1/Harlan/LOCALS~1/Temp/w_search_1098_print.pdf
  c5 /D/docs/WFA/complete/acmru.pdf

Again, although many GUI applications maintain a list of
recently accessed files (commonly known as an “MRU” list)
in the Registry, each of the lists may be maintained differently
based on the application and/or the vendor (yes, even Microsoft
maintains MRU lists for different applications differently).
However, the filenames persist within the application MRU list
even if the file is viewed and then deleted. For example, if some-
one views a movie file via Real Player (via the realplayer6.pl plu-
gin) or Windows Media Player, and then deletes the movie file,
the filename is not automatically deleted from the MRU list.
Therefore, an analyst can see that the file was viewed, where the
file was originally run from (that is, Temporary Internet Files,
removable media, and so on), and when the most recent file was
viewed. The presence of a filename within the application MRU
list indicates that the user account and application were used to
view the file in question.

ComDlg32
The key “ComDlg32” refers to common dialogs available on
Windows systems. Rather than requiring developers to recreate or
code from scratch some of those dialogs that are used frequently,
these are actually provided for use through the Windows applica-
tion programming interface (API). The path to the key is Software
| Microsoft | Windows | CurrentVersion | Explorer | ComDlg32,
and the keys of interest beneath this key differ slightly between
Windows XP, and Vista and Windows 7. Figures 4.11 and 4.12 illus-
trate the keys on Windows XP and Vista, respectively.

Figure 4.11  Windows XP ComDlg32 Key, Viewed via RFV

Chapter 4  Case Studies: Tracking User Activity   179

The OpenSaveMRU (on Windows XP and 2003; OpenSave
PidMRU on Vista and Windows 7) tracks files that the user account
is used to access via the Open and Save As … common dialogs.
You can see the use of these common dialogs when opening an
application and clicking on the File menu item. From there, the
drop-down menu will include Open and Save As … options, and
choosing these options will launch the common dialogs. This key
and its subkeys also track previously opened or saved files as an
autocomplete feature, as illustrated in Figure 4.13.

Figure 4.12  Windows Vista ComDlg32 Key, Viewed via RFV

Figure 4.13  MS Paint Save As … Dialog Autocomplete Listing

180   Chapter 4  Case Studies: Tracking User Activity

As you can see illustrated in figures 4.comdlg1 and 4.comdlg2,
the OpenSaveMRU and OpenSavePidMRU keys contain subkeys
that specify the extensions of the files opened or saved. In figure
4.comdlg1, we see a subkey named asc, which refers to files used
by the Pretty Good Privacy (PGP) encryption application. Each of
these keys contains values whose names letters and whose data
points to the files in question. Each key also contains an MRUList
value, which is a string that lists the MRU order in which the files
were accessed. As such, the LastWrite time of the key would cor-
respond to the time that the first file referenced in the MRUList
value was accessed. The OpenSavePidMRU subkey values are dif-
ferent, in that the values are binary data types and need to parsed
appropriately to retrieve the filename; also, the subkeys each
contain a value named MRUListEx (as opposed to a value named
MRUList), which is also a binary data type and needs to be parsed
appropriately, as well.
One subkey beneath the OpenSaveMRU and OpenSavePidMRU

keys that stands out is the key named “*.” This refers to files of any
extension, or no extension, and also maintains the list of most
recently accessed files for each type. For example, beneath the
OpenSaveMRU key in figure 4.comdlg1 is a subkey named zip,
which contains six values. The most recently accessed file that
ends with the “.zip” extension is not only listed in the MRUList
value within that key but it is also listed as a value in the “*” subkey.
The LastVisitedMRU (LastVisitedPidMRU on Vista and

Windows 7 systems) key serves a bit of a different function.
This key tracks the application last used to access the files
listed in the OpenSaveMRU key (and its subkeys), as well as
the directory that was last accessed. The OpenSaveMRU val-
ues include the paths and filenames; also, remember that
the common dialogs (in this case, Open and Save As …)
are not applications in and of themselves, but are instead
accessed via other applications, such as MS Paint, Notepad,
MS Word, the Web browser, and so on. Figure 4.14 illustrates a
LastVisitedMRU value.

Figure 4.14  Windows XP LastVisitedMRU Value Viewed via RFV

Chapter 4  Case Studies: Tracking User Activity   181

In Figure 4.14, we see the executable which was used to access
the common dialog (Powerpnt.exe) and the directory that it was
used to access (C:\docs\HK). Using this information, we can then
correlate the values based on the LastVisitedMRU key’s MRUList
value to the values found beneath the OpenSaveMRU* key, in
order to obtain path information. For example, the first value
referenced in the LastVisitedMRU MRUList value is “f,” which
points to Winword.exe, and includes the C:\docs\xcel directory
in the binary data. We then go to the OpenSaveMRU* key, and
the first value listed in the MRUList value is also “f,” which in this
case points to C:\docs\xcel\xcel.doc. However, remember that
these are MRU keys, so we shouldn’t expect to find a great deal of
historical data that would allow us to track file paths back several
weeks or months.

Historical Data
Let’s not forget that although some Registry keys (such as the ones that
maintain MRU information) can show us not only the most recent docu-
ments that a user account had been used to access, but also documents
accessed in the past; analysts can also find further historical data in
Windows XP system Restore Points, or within Volume Shadow copies (as
on Vista and Windows 7 systems).

Similar to the OpenSavePidMRU key values, the values listed
within the LastVisitedPidMRU key (Vista, Windows 7) are binary
data types and need to parsed appropriately. However, these
values contain similar information as their counterparts on
Windows XP and 2003 systems. The comdlg32.pl RegRipper plu-
gin will extract the information from Windows XP and 2003 user
hives, and the comdlg32a.pl plugin will also extract the informa-
tion from Vista and Windows 7 user hives.

Shellbags
One of the really useful aspects of the Windows operating sys-
tems is that when a user opens an application and modifies the
location and size of the application window, those settings are
saved so that the next time the user opens the application, the
window is right back to where the user left it. This is addressed
in part in MS KB article 813711 [2]. The window configuration
and settings information is maintained beneath the following
keys, found in the NTUSER.dat hive on Windows XP and 2003
systems:

Software\Microsoft\Windows\Shell\Bags
Software\Microsoft\Windows\ShellNoRoam\Bags

182   Chapter 4  Case Studies: Tracking User Activity

Again, this is where information about the windows settings
is stored; information about the traversed path is maintained in
the BagMRU key, which maintains an MRU list of the windows
referred to in the Bags keys:

Software\Microsoft\Windows\Shell\BagMRU
Software\Microsoft\Windows\ShellNoRoam\BagMRU

This information can be very useful to an analyst, as it can
provide a historic view of folders that the user has modified,
including using Windows Explorer to access removable storage
devices and remote network shares. The format of the BagMRU
keys is cascading in nature, building on the path from the root
outward. Within the keys, there are binary values that include
information about the window (location, title); however, there is
very little documented information about the information avail-
able in these binary values and how to parse that information.
As such, a great deal of the information available is the result of
testing and research. For example, the “Using shellbag informa-
tion to reconstruct user activities” [3] provides some excellent
information about the structure of these keys and values and
describes an application (that is, “Tracehunter” [4]) that can be
used to parse the value data. However, as of this writing, I have
been unable to locate information regarding obtaining a copy of
the application for use or testing. However, based on the descrip-
tion, the Tracehunter application does sound as if it would be a
very useful tool for an analyst.
As of Windows Vista, the key paths still appear to remain

in the NTUSER.dat file, but are sparsely populated within that
hive. With Vista and Windows 7, the predominance of the values
appears to have been moved to the USRCLASS.dat hive, in the
following path:

Local Settings\Software\Microsoft\Windows\Shell\Bags
Local Settings\Software\Microsoft\Windows\Shell\BagMRU

USRCLASS.dat
On Windows XP and 2003 systems, the USRCLASS.dat hive file is located
in the following path:

%UserProfile%\Local Settings\Application Data\Microsoft\
Windows

On Vista and Windows 7 systems, the hive file can be found in the
following path:

%UserProfile%\AppData\Local\Microsoft\Windows

Chapter 4  Case Studies: Tracking User Activity   183

Again, these keys can provide information about the resources
that have been accessed through the use of the user account.
Even when removable storage devices have been removed or net-
work shares disconnected, the information in the BagMRU values
will persist. However, at the moment, detailed information about
the creation and modification of the BagMRU values is extremely
sparse and there needs to be more research and testing in this area.

BagMRU Plugins
I’ve written two testing plug-ins (bagtest.pl and bagtest2.pl) that parse
the BagMRU values from an NTUSER.dat hive file from a Windows XP
system. At this point, those plug-ins simply traverse through the key
paths to the values, providing the sequence of key names and the name
of the resource or window accessed. For example, the output of the
bagtest2.pl plugin appears as follows:

\0	
\0\0	 Entire Network ()
\0\0\0	� Microsoft Windows Network (Microsoft

 Network)
\0\0\0\0	 Pitstop (Microsoft Network)
\0\0\0\0\0	 \\192.168.1.103 (Microsoft Network)
\0\0\0\0\0\0	� \\192.168.1.103\download (Microsoft

 Network)
\0\0\0\0\1	 \\Bob (Microsoft Network)
\0\0\0\0\1\0	 \\Bob\SharedDocs (Microsoft Network)
\0\0\0\0\1\0\0	 &My Music
\0\0\0\0\1\0\0\0	 My Playlists
\0\0\0\0\1\0\1	 My Videos
\0\0\0\0\1\0\2	 My Pictures
\0\0\0\0\1\0\2\0	 Sample Pictures

The next step for these testing plug-ins would be to align the entries
so that the paths were consolidated, along with key LastWrite times.
For example, in the excerpt from the output of the bagtest2.pl plugin
provided above, rather than having a series of paths listed separately,
provide consolidated paths, such as “\\192.168.1.103\download” and
“\\Bob\SharedDocs\My Pictures\Sample Pictures.” Ultimately, this
format would be far more useful to analysts, particularly when cor-
related with relevant time stamps and incorporated into a time line of
system and/or user activity.

UserAssist
During a job interview about 11 years ago, the interviewer asked
me what my favorite Registry key was; if I had to answer that
question today, I’d have to say that it is the UserAssist key. Oddly

184   Chapter 4  Case Studies: Tracking User Activity

enough, the key name is pretty descriptive … the contents of this
key assist the user. Okay, I know it’s a stretch but bear with me;
beneath this key (we’ll address exactly where shortly) are Registry
values that track a user’s interactions via the Windows Explorer
shell, primarily when the user clicks or double-clicks certain items.
This information is then used by the operating system to tailor the
user experience; for example, I use a Windows XP SP3 laptop for
work. Each morning when I log in to the corporate network, I click
the Start button, go to Programs, then to “Microsoft Office,” and
in the final menu, I click Microsoft Outlook. After the first cou-
ple of times that I did this, when I got to that final menu, only the
Microsoft Outlook choice was immediately visible; why would the
operating system continue completely expand all of the menus in
the path, when I’d demonstrated that I was primarily interested in
only one or two items? It’s a much better and preferable user expe-
rience to show those items I’m most interested in via customized
menus based on my usage history. Given this and the data included
in the relevant values, would lead you to believe that this key
should really be called forensics assist!
So, to begin, the full path to the UserAssist key within the

NTUSER.dat hive is as follows:

Software\Microsoft\Windows\ CurrentVersion\Explorer\
UserAssist

Beneath this key (on all versions of Windows), you’ll find two
(I’ve seen three on a very few Windows XP systems) keys with
names that appear to be GUIDs, as illustrated in Figures 4.15
and 4.16.
As you can see in Figures 4.15 and 4.16, each of these keys

will have subkeys named count, and we’re interested in the val-
ues located within the Count subkeys. Figure 4.17 illustrates what
these values look like in a Registry viewer.

Figure 4.15  Windows XP UserAssist Key

Chapter 4  Case Studies: Tracking User Activity   185

The values illustrated in figure 4.ua3 don’t look very useful,
do they? Well, that’s because the value names are “encrypted”
via the ROT-13 substitution algorithm; that is, each letter is
swapped with the one 13 positions further down in the alphabet.
To undo (decrypt) the algorithm, we simply reverse the substitu-
tion. Fortunately, the userassist.pl (specifically for Windows XP
systems) and userassist2.pl (will work for all Windows systems)
RegRipper plugins will handle this translation easily using the
following code:

$value_name =~ tr/N-ZA-Mn-za-m/A-Za-z/;

Before we proceed, it’s important at this point to mention
that Didier Stevens [5] has conducted a considerable amount of
research into the values beneath the UserAssist key, particularly
with respect to Windows 7. In fact, Didier has not only published
his findings in [IN]SECURE magazine [6] but he also created a
tool (called UserAssist) to decrypt the value names and parse the
data for pertinent information. Without question, Didier deserves
a great deal of credit for the current understanding of, and

Figure 4.17  UserAssist\..\Count Key Values

Figure 4.16  Windows 7 UserAssist Key

186   Chapter 4  Case Studies: Tracking User Activity

interest in, the contents of the UserAssist key within the com-
puter forensics community.

Vigenere Encryption
During his research into the UserAssist key, Didier discovered that in the
beta version of Windows 7, rather than ROT-13 “encryption,” the value
names were encrypted using Vigenere encryption, a polyalphabetic
substitution cipher originally described by Giovan Battista Bellaso in
1553. The final release of Windows 7 switched back to the use of ROT-13
encryption. According to a Microsoft employee I spoke with, the use of
the encryption or obfuscation technique isn’t to protect any sensitive
information; rather, it’s intended as a deterrent to prevent the user from
modifying any information in the value name or data.

Okay, so how is all of this important? Well, remember that the
operating system uses some method for keeping track of a user’s
actions (which items they click, which shortcuts and applications
they access, and so on), and then uses that information to pro-
vide an improved (beyond the default installation) experience to
the user. Both testing and analysis indicate that the information
embedded within the binary data associated with many of the
values beneath the UserAssist key includes a 64-bit time stamp
(that is, our familiar FILETIME structure), as well as a counter
(referred to as a “run count”) that appears to indicate how many
times the user has interacted with the shell in the manner in
which these values would be created or modified.

Run Count
When the counter value embedded within the UserAssist value binary
data was first examined, it appeared that the count actually started
at 5, rather than 0. There seemed to be no apparent reason for this
(the internals of any algorithms that may use this information are not
known), Ovie Carroll and Bret Padres (of the CyberSpeak podcast fame)
came up with a very funny mnemonic device; the name “Gates” (as in
“Bill Gates”) contains five letters. Regardless of the reason apparently
starting the count at 5, testing indicated that this was, in fact, the case;
performing an action and then parsing the information on live system
would result in a count value of 6 (the first time that the action was
recorded, plus 5).

In short, the binary data can be parsed (by RegRipper plugins)
to determine how many times the user had taken this action
(that is, navigated through the Programs menu to launch MS
Word, double-clicked a desktop icon, and so on) via the shell and
when they last did so. An important aspect of this is that in order

Chapter 4  Case Studies: Tracking User Activity   187

to create/modify these values, the user needs to interact with
the Explorer shell; that is, if the user clicks Start and then types
“cmd” into the Run box on Windows XP, you don’t get the same
artifacts as if the user clicks Start | Programs | Accessories and
chooses “Command Prompt,” and you won’t be able to “see”
what the user did in the command prompt.
Let’s take a look at example; this example is an excerpt from

the output of the RegRipper userassist2.pl plugin, run against an
NTUSER.dat hive extracted from a Windows XP system:

{75048700-EF1F-11D0-9888-006097DEACF9}
Thu Feb 7 13:37:26 2008 Z
	UEME_RUNPATH:E:\FTK Imager.exe (1)
Thu Feb 7 12:41:42 2008 Z
	UEME_RUNPATH:C:\Program Files\Microsoft Office\OFFICE11\
 WINWORD.EXE (120)
Thu Feb 7 11:27:41 2008 Z
	UEME_RUNPATH:C:\WINDOWS\regedit.exe (5)
Thu Feb 7 10:39:55 2008 Z
	UEME_RUNPATH:Lotus Notes 7.lnk (142)
	UEME_RUNPATH:C:\Program Files\Lotus\notes\notes.exe (142)
Thu Feb 7 10:38:38 2008 Z
	�UEME_RUNPATH:C:\Program Files\AT&T Network Client\
 NetClient.exe (147)

	UEME_RUNPATH:{5D5A8163-501D-4F38-8B17-23488A324D64} (146)
	UEME_RUNPATH:{AC76BA86-1033-0000-BA7E-100000000002} (112)

As you can see from the above excerpt, the userassist2.pl plugin
decrypts the value names beneath the UserAssist subkeys and then,
where applicable, parses the associated binary data for the run
count and the last time the action was taken. First, we see the GUID
that we mentioned which is one of the UserAssist subkeys; open-
ing the Software hive from the system from which the NTUSER.
dat hive was extracted in the MiTeC Registry File Viewer (RFV) and
searching for that GUID, we find that it refers to a class identifier
(CLSID) beneath the Classes key that points to “Active Desktop.”
Next, we see an indication that on February 7, 2008, at

approximately 13:37:26 Z (see the “Time References” sidebar)
FTK Imager was launched from the E:\ drive. Well, that’s where I
placed a CD in the system and ran FTK Imager in order to collect
specific files from the system, including the Registry hives. That
reference begins with “UEME_RUNPATH,” which indicates an
executable file was accessed; in this case, by double-clicking the
program icon as it appeared in Windows Explorer (opened to the
CD, of course). According to the run count (that is, the number in
parentheses after the application path), at this point, FTK Imager
was only run once.

188   Chapter 4  Case Studies: Tracking User Activity

Time References
Most of the RegRipper plugins report time with “Z” or “UTC” at the end.
The “Z” refers to Zulu, or Greenwich Mean Time (GMT). This is analo-
gous to Universal Coordinated Time, or UTC. When performing analysis
across multiple systems, or across multiple time zones, normalizing the
time stamps to a common format and reference point can make that
analysis much easier. I’ve had several cases where an intruder accessed
systems within an organizations infrastructure that were dispersed
across multiple time zones and normalizing all time stamps on all of
the affected systems to UTC made it much easier to follow his trail, and
more importantly, illustrate it to the customer.

Next, we see that regedit.exe was launched and that Lotus
Notes (our e-mail application at the time) was run for the 142nd
time by double-clicking the Windows shortcut (on the desk-
top). Beneath that, at 10:38:38 Z, we see that the AT&T Network
Client (VPN solution) was accessed and that there are two
GUIDs, as well. Once again, opening the Software hive from this
system in RFV and searching for “{5D5A8163-501D-4F38-8B17-
23488A324D64},” we find that this also appears as a subkey name
beneath the Microsoft\Windows\CurrentVersion\Uninstall key
and that subkey contains a value named DisplayName set to
“AT&T Network Client.” The other GUID (AC76BA86-1033-0000-
BA7E-100000000002) appears in 24 locations (keys and values)
throughout the Software hive and appears to refer to the Adobe
Acrobat Reader version 7.0 installer.
Other entries may appear with different prefixes in the output

of the userassist2.pl plugin (and other tools). For example, rather
than being preceded by “UEME_RUNPATH,” some decoded val-
ues may begin with “UEME_RUNPIDL” (a “PIDL” is a pointer to
an ItemIdList structure, which is used to identify objects in the
Shell namespace [7]), referring to a folder or shortcut, and others
may begin with “UEME_RUNCPL,” which refers to Control Panel
applets being clicked.
I should point out that the RegRipper userassist.pl plugin was

written specifically for the NTUSER.dat hives from Windows XP
systems, whereas the userassist2.pl plugin was written for all cur-
rent versions of Windows (Windows XP through Windows 7), in
that it does not look for specifically named subkeys beneath the
UserAssist key.
Personally, I’ve used the information within the UserAssist

keys to great effect during a number of examinations. I’ve seen
where users and intruders have installed and then run Cain.exe,
in order to collect passwords from a variety of applications (see
Chapter 3, “Case Studies: The System,” for an example of how
analysts can make use of tools like Cain); even after deleting the

Chapter 4  Case Studies: Tracking User Activity   189

application, the entries in the UserAssist key persist. I’ve seen
where programs were run from an external resource, such as a
CD or thumb drive, because the user double-clicked the icon via
the Windows Explorer shell. I’ve also seen where system admin-
istrators who stated that once a system had been confiscated
and “secured,” they “didn’t do anything” had actually installed,
run, and then uninstalled two consecutive antivirus scanning
applications, one after another. I guess they were just trying to
be thorough … but their actions were “recorded” and accounted
from some of the artifacts that I was seeing, as well as some I
wasn’t seeing. I’ve seen where intruders have installed malware
on systems that we weren’t immediately aware of, and this infor-
mation helped us a great deal in our examination.
I’ve also examined systems where there were apparent dispar-

ities with time stamps recorded on the system and, in parsing the
UserAssist key information, found “UEME_RUNCPL” entries ref-
erencing “timedate.cpl,” the Date and Time Control Panel applet
that allows the user to modify the system time. The user can
change the system time in this manner by either double-clicking
the Control Panel applet, or by right-clicking the clock on the
far right of the TaskBar and choosing Adjust Date/Time from the
context menu that appears.
As we saw in Figures 4.15 and 4.16, Windows 7 uses a different

set of GUIDs for the UserAssist subkeys and that’s not all that’s
different. Those values that contain time stamp data are also
formatted differently and possibly contain a bit more informa-
tion. Again, Didier Stevens has some testing and analysis in this
area, in an attempt to identify the various pieces of information
(that is, such as how long the application had focus, and so on)
and reviewing some of what he’s published, it’s easy to see how
an analyst can use them to support his/her findings during an
examination. This is an area that will require significantly more
research and testing.

XPMode and UserAssist
Windows 7 allows the user to install legacy applications into what
is called “XPMode,” allowing those applications to run in a specific
Windows XP virtual machine. So, the user installs the application and
the icon appears on their Windows 7 desktop, but when they double-
click the Programs icon, “under the hood,” the Windows XP virtual
machine (a .vhd file) is launched, and the application is loaded and run.
For fun, I installed Skype on a Windows 7 laptop, but installed the

application in XPMode, and ran it several times. Afterward, I extracted
the pertinent Registry hive files from both the Windows 7 platform
and the Windows XP .vhd file and, parsing the UserAssist entries

190   Chapter 4  Case Studies: Tracking User Activity

from both, found that double-clicking the icon on the Windows 7
desktop leaves artifacts in the Windows 7 UserAssist key, as expected.
In addition, I found the following key and value in the Windows 7
USRCLASS.dat hive:

Key: 198afac9.Windows.XP.Mode\shell\open\command
Value: (Default)
Data: “C:\Windows\System32\VMSAL.exe” “Windows XP Mode”
 “||198afac9” “Skype” “%1”

This illustrates the mechanism by which applications installed in the
Windows 7 XPMode are launched and provides clues to other possible
artifacts.

One final note with respect to the UserAssist key: there have
been two additional Registry values identified that may signifi-
cantly affect the information maintained beneath the UserAssist
subkeys. Both of these would be values added (they do not exist
by default on any system I’ve seen) to a Settings key (beneath
the UserAssist key). The first value NoEncrypt, is discussed in
MS KB article 239062 [8] and when set to a DWORD value of
“1,” can apparently be used to disable the ROT-13 encryption.
The other value NoLog, when set to a DWORD value of “1,” can
apparently be used to disable logging all together. Remember,
though … if the logging or recording of user interaction data is
disabled, the user experience will be significantly altered, as data
used to enable customized menus based on usage history is no
longer available. Now, I haven’t seen either of these values dur-
ing an engagement, but they are important for an analyst to be
aware of, as the absence of entries beneath the UserAssist sub-
keys could be the result of deletion (manually, or via an “evidence
eraser” program or script), or through the addition of the NoLog
value.

NoInstrumentation
Another Registry value mentioned in MS KB article 292504 [9] is
“NoInstrumentation.” This is a value that can be set via Group Policies
and would be added to the user’s CurrentVersion\Policies\Explorer key.
When set to a DWORD value of “1,” this value will “prevent the system
from remembering the programs run, paths followed, and documents
used”; apparently, this value may have more wide-ranging effects than
simply disabling recording of information beneath the UserAssist key.

MuiCache
The MuiCache key is one of those Registry keys that seems
as if it might be very useful, but for which there is very little

Chapter 4  Case Studies: Tracking User Activity   191

documentation available. On Windows XP and 2003 systems, the
path to the MuiCache key within the user’s NTUSER.dat hive is

Software\Microsoft\Windows\ShellNoRoam\MUICache

On Vista systems and above, the key path is located in the
user’s USRCLASS.dat hive, in the following key path:

Local Settings\Software\Microsoft\Windows\Shell\MuiCache

So, how is this key useful? Several years ago, I was doing some
research on specific malware samples and looking to see what
some of the antivirus (AV) vendors had already documented with
respect to the variants they’d seen. In some instances, I began to
see references to malware creating a value (according to the AV
vendor write-up) within the MuiCache key when run, and not
being familiar with this key, I wanted to see if I could determine
the reason for this value being created. As it later turned out, the
malware wasn’t creating the value … the value was being cre-
ated by the operating system, as a result of how the malware was
being launched within the testing environment. This proved to
be very interesting and very useful.
We’ve already seen how we can track the user’s activity on a

system when they interact with the shell, whether they’re con-
ducting searches, or launching applications. However, in some
instances, we’ll see that a command prompt was launched (as
indicated by the UserAssist key or RunMRU entries) and then
nothing afterward. In some instances, we may be able to get an
idea of what the user may have done (or more correctly, what
the user account may have been used to do …) by examining
the contents of the MuiCache key. By default, when an account
is first created (or shortly after it is first used), the MuiCache key
may contain value names and data similar to what is illustrated
in Figure 4.18.
As you can see in figure 4.mui1, the value names start with

“@” and appear to refer to shell-based functionality available as
part of a default installation, through various DLLs. As the user
begins to use and interact with the system, other values begin to
appear, as illustrated in Figure 4.19.
As you can see in Figure 4.19, many of the new value names

that begin to appear beneath the key once the user account
begins to be used do not begin with “@” and instead point to
executable application files (rather than DLLs). Also, the data
for the values appears to be populated from one of a number of
locations, including perhaps the window title (from when the
application is launched) as well as perhaps the file version infor-
mation embedded within the portable executable (PE) file. None

192   Chapter 4  Case Studies: Tracking User Activity

of the applications (with the exception of the Dell QuickSet appli-
cation) that appear in Figure 4.19 were installed by default on the
system; rather they were installed and run by the user after the
user account was created. This key can provide us with an indi-
cation of the various applications and tools that had been run
within the context of the user account.
This key also provides a sort of historic, persistent record

of the applications that the user account has been used to run,
albeit without any sort of time stamp specific to each application.
During an engagement, I was parsing the NTUSER.dat file from

Figure 4.19  Additional MuiCache Key Contents (Windows Vista)

Figure 4.18  MuiCache Key Contents from a Windows Vista System

Chapter 4  Case Studies: Tracking User Activity   193

a compromised Windows 2003 system (using RegRipper’s mui-
cache.pl plugin), and I noticed that there were several unusual
value names that referenced non-native executable files in the
C:\Windows\Tasks directory. It appeared that the intruder was
placing his/her toolset in this directory, as by default, when view-
ing the Tasks directory via the Windows Explorer shell on a live
system (which is how most system administrators tend to do
so), the .exe files do not appear in the viewing pane. This means
that the intruder’s tools are effectively hidden from view from
most of the likely first responders, should any unusual activity be
detected on the compromised system. It turned out that we were
able to locate several of the tools in the Tasks directory, but sev-
eral others had apparently been deleted. This provided an inter-
esting indication of the intruder’s other activities on the system
(that is, they’d apparently added, used/run, and then deleted
other command-line tools) that remained persistent after the
intruder had apparently deleted several of the tools used.

MuiCache Key Historical Data
Although the only time stamp associated with the MuiCache key is the
LastWrite time of the key itself, we may be able to get some sense of
when the applications were run by attempting to correlate the value
names we find here with other data sources, such as data found within
the UserAssist key, as described previously in this chapter. Another
source might be Registry hives included in System Restore Points and/
or Volume Shadow Copies.

Several years ago, I used to present pretty regularly at local
High Tech Crime Investigation Association (HTCIA) conferences
(our local chapter became known as the Regional Computer
Forensics Group, or RCFG) and spoke to a number of law
enforcement officers about the issue of steganography, or hid-
ing programs or files inside other files. Although steganogra-
phy was mentioned in the media, as well as within a number of
training courses, I was curious as to how prevalent it was seen
within the law enforcement community. Interestingly enough,
not one of the law enforcement officers I spoke to could recount
ever having seen or suspected the use of steganography in any of
their examinations. Although there are a number of freely avail-
able tools for embedding or hiding files (executable files, images,
text, videos, and so on) within other file, many of them do not get
installed on a system in the usual sense; instead, the application
files are simply added to a directory by the user. The contents of
the MuiCache key may indicate the use of steganography appli-
cations, particularly those that may have been copied to a system
or run from external media, such as a CD or thumb drive.

194   Chapter 4  Case Studies: Tracking User Activity

Virtualization may also present issues during an examination.
Many analysts are familiar with virtualized environments such as
Microsoft’s Virtual PC (VPC, the basis for Windows 7s XPMode)
as well as VMWare. However, there are a number of virtualized
environments that allow a user to connect a thumb drive to a
system and launch the virtual environment, perhaps running a
Linux-based operating system … all without shutting down the
Windows system. This can allow a user with physical access to
a system to perform a number of malicious activities, all while
leaving almost no footprints at all on the Windows system. Diane
Barrett, an associate professor at the University of Advanced
Technology, has published several presentations that describe
artifacts left behind as a result of the use of a number of portable
virtual environments, including MojoPak [10] and Moka5 [11].
Apparently, Professor Barrett identified very few artifacts indicat-
ing the use of these environments, one of which was an entry in
the MuiCache key.
Overall, the point of this is that, under most normal circum-

stances, values beneath the MuiCache key generally appear
as a result of interaction of some kind with the shell. When an
executable file path is found as a value name beneath this key, it
appears to indicate that the user account in question was used to
run the application. Follow-on analysis steps might be to attempt
to locate the file within the file system (or unallocated space), a
Prefetch file, or perhaps an MFT entry (particularly if the file
path indicates that the file was on a local hard drive). This key
can provide some very interesting indications of activities that
occurred within the context of the user account.

File Associations
We discussed in Chapter 3, “Case Studies: The System,” how file
association information from within the Software hive can be used
to answer questions regarding the relationship between file exten-
sions and applications on a system. However, information about file
associations is also maintained on a per-user basis, as well. If you
open the Registry Editor on a live system to the HKEY_CURRENT_
USER hive and expand the tree beneath the Software key, you’ll see
a Classes subkey with information similar to that which appears
in the Software hive. This information is mapped into the HKEY_
CURRENT_USER hive from the user’s USRCLASS.dat hive file and
supersedes information available in the Software hive.
As an example of this, we can start with the discussion of the

default Web browser from the “Web Browser” section of Chapter 3,
“Case Studies: The System.” In that particular case, the information

Chapter 4  Case Studies: Tracking User Activity   195

from the Software hive indicates that Internet Explorer is the
default Web browser for the system. However, the “Default” value
from the following key (from the live system, accessed via regedit.
exe) points to the Firefox Web browser:

HKEY_CURRENT_USER\Software\Classes\http\shell\open\command

This maps to the following key found in the USRCLASS.dat
hive within my User Profile:

http\shell\open\command

What this shows is that when I log into the system with my
account, the system settings for file associations (and in this par-
ticular case, the default Web browser) are superseded by settings
found in my USRCLASS.dat hive.

Scenarios
Talking to folks after some of my previous books had been pub-
lished, one of the consistent things we’d discussed was that while
I’d mention this Registry key or that file in the Windows\system32
directory, there was really nothing in the book that tied the men-
tioned or described artifacts together, which wove them into an
overall investigative tapestry that allowed the analyst to tell the
story of what happened. This is something many folks said that
they wanted to see; that is, they wanted to see examples of how
to go from artifact A to artifact B, and so on, until a story has been
written. Personally, like many others, I find long lists of Registry
keys and values with no real investigative context tying them
together to be, well, kind of boring … not only to read but also
to write, as well. As such, I wanted to provide some scenarios

Note
As we’ve seen, there are a number of instances where Registry artifacts that indicate the installation or use of applica-
tions persist after the application is removed or deleted. This applies to many applications that simply have a GUI, but do
not require an installation routine (that is, the application files are simply copied to a directory). However, many applica-
tions that utilize an installation routine and set file associations in the Registry will also “undo” those settings when
the application is uninstalled. This is yet another example of how Registry hives from System Restore Points (Windows
XP) or Volume Shadow Copies, as well as deleted keys extracted from unallocated space within Registry hive files
(via regslack.exe), can provide significant historical data from a system.

196   Chapter 4  Case Studies: Tracking User Activity

that describe steps I and others have taken to correlate multiple
sources (specific to the Registry) and build as complete a picture
as possible.

Tying It Together
I worked an engagement several years ago where the intruder
had gained access to the infrastructure via Remote Desktop; it
later turned out that local law enforcement had worked with
the employee whose home system had been compromised and
found a key stroke logger. The organization was on the verge of
implementing RSA SecurID for remote access, but simply had not
been far enough along when the incident occurred. The intruder
accessed the infrastructure with the pilfered credentials and then
switched to using a dormant domain administrator account;
though it was available, this account had not been disabled and
simply had never been used in the infrastructure. This made the
intruder relatively easy to track across the various systems that
he accessed, as each system had a newly created profile for the
account he was using, with the associated NTUSER.dat hive.
Examining this file, we were able to see what the intruder had
done; we saw indications in the ACMru key of searches that he’d
run, as well as files accessed in the RecentDocs key. We were also
able to see other systems that the intruder had accessed via a
Remote Desktop Connection; these systems were recorded in the
following Registry key:

Software\Microsoft\Terminal Server Client\Default

Beneath this key are values that start with “MRU,” followed
by a number, indicating the order in which these systems had
been accessed [12]. The associated data provided use with
names and IP addresses of other systems that the intruder had
accessed. When we showed up, the customer had pointed us
to about a dozen systems they knew to be compromised; using
the contents of this key, we were able to locate another dozen or
so systems that had been accessed, and using time stamps, we
were able to literally map the intruder’s progression through the
infrastructure.
Most importantly, however, we were able assist the customer

with a much more important question: was sensitive data pos-
sibly exposed? Had the intruder accessed files known to contain
sensitive data? Using all of the data available to us, including
the contents of the RecentDocs keys from the intruder’s User
Profile created on each system, as well as the MRU keys for
applications used to open files, we were able to put together a

Chapter 4  Case Studies: Tracking User Activity   197

convincing argument that there were no indications that the
intruder had accessed the files in question (the customer had
already identified specific files that were known to contain sensi-
tive information). In fact, from what we saw, the intruder did not
appear to be aware of type of organization he/she compromised,
and the contents of the ACMru keys from several of the systems
indicated that he/she was looking for passwords. Correlating
this information with other data derived from other areas of the
infrastructure, we were able to provide strong indications that the
intruder had not accessed the files to regulatory bodies, which
was very beneficial to our customer.

The “Trojan Defense”
The Trojan defense is a term that has become more popular since
it hit the scene in 2003 when it was used in court. Aaron Caffrey
had been accused of attacking military computer systems and his
defense was that, in fact, he hadn’t done so. Rather, he claimed
that his system had been infected with malware, which was
responsible for the attacks. Law enforcement sees this defense
raised often, and as such, has become concerned about hav-
ing to address it. After all, how do go about proving that a virus
or Trojan wasn’t responsible for the actions (downloading illegal
images and movies, attacking other systems, and so on) when we
see security experts deriding antivirus scanning applications as
being insufficient?
Well, how about if you take the argument from a different

direction? Rather than (or, in addition to) attempting to dis-
prove the existence of the malware, how useful would it be to
show that the user account had been used to view the files? That
would certainly obviate the “the malware put it there and I had
no idea” defense, wouldn’t it? One place to start would be the
MUICache and UserAssist keys, to see which applications for
viewing files or movies had been launched. From there, check the
RecentDocs keys, as well as the contents of the OpenSaveMRU
(or OpenSavePidMRU, as appropriate) keys for names of files
that may be inappropriate. Remember, if a user launches an
application to view a file, and the filename is recorded in the
RecentDocs (or OpenSaveMRU) key, and then the file is deleted,
the value within the key will remain. For additional informa-
tion and correlation, you may also want to extract the MRU
or recently accessed file lists from other applications, such as
Windows Media Player or Real Player. Remember, however, that
only filenames are listed here, and although we often tend to
believe that names of files may indicate their contents, this really

198   Chapter 4  Case Studies: Tracking User Activity

isn’t the case. Therefore, be sure to correlate all appropriate infor-
mation. What these Registry locations indicate is that whomever
was accessing the user account was aware that the files were on
the system and was using specific applications (that is, image
viewers, Web browser, movie viewers, and so on) to view them.
Another area to look into, that is often not considered, is one

avenue through which file can get on systems. Yes, many times
files are downloaded from the Internet through the Web browser,
or as an attachment to e-mail. Sometimes, however, files of all
types arrive on systems in a compressed archive. In fact, when
writing this book (and my previous books), I would submit my
draft chapters to the publisher in a zipped archive, and once a
chapter is ready for final submission, the archive will often con-
tain the chapter submission as an MS Word document, as well as
image files, scripts, and so on. The 7Zip application, for example,
maintains a list of archives accessed in values beneath the follow-
ing key within the user’s hive:

Software\7-Zip\Compression\ArcHistory

The 7Zip application also maintains a list of archive extraction
paths beneath the following key within the user’s hive:

Software\7-Zip\Extraction\PathHistory

In both cases, the value names and data beneath the two
above listed keys are easy-to-read strings. The WinZip applica-
tion maintains similar listings of accessed archives and extrac-
tion directories beneath the “Software\Nico Mak Computing\
WinZip\filemenu” and “Software\Nico Mak Computing\WinZip\
extract” keys, respectively (the winzip.pl RegRipper plugin will
extract and display the value names and data from beneath
each key, as well as each key’s LastWrite time). The WinRAR
application maintains similar listings of accessed archives
and extraction directories beneath the “Software\WinRAR\
ArcHistory” and “Software\WinRAR\DialogEditHistory\ExtrPath”
keys, respectively. In most instances, the value data contains the
full path to the file being accessed, which can lead an analyst to
external devices. Further, although these keys contain filenames
and not content, they can still provide an analyst with indicators
that may help determine whether or not the “Trojan” or malware
was the culprit, or if it was the user.

Connecting to Other Systems
Many times, as a responder or analyst, I’m asked to determine
if the system was associated with any “suspicious or unusual

Chapter 4  Case Studies: Tracking User Activity   199

activity.” Most times, that’s far too general of a goal to really
address, as I could end up spending hours or even days devel-
oping a list of indicators that I thought could be “suspicious or
unusual,” only to find out that those were actually part of the
user’s job description.
One activity that may be “suspicious,” or even a violation of

acceptable use policies, is accessing other systems. By this, I don’t
mean such as accessing Web sites; instead, I mean accessing
other employee’s systems. In my experience as a security admin-
istrator, this is something that should be and is usually limited to
a very few specific individuals, as various issues could be raised.
However, suffice to say that in most instances, an employee
accessing another employee’s system is something could be “sus-
picious or unusual activity.” The artifacts that we would look for
and hope to find depend largely on the method used to access
other systems. For example, earlier in this chapter, we saw where
to find artifacts of connected to systems via a Remote Desktop
Connection (the user clicks Start | Programs | Accessories |
Remote Desktop Connection). If the user maps a share (we saw
in Chapter 3, “Case Studies: The System,” how to determine the
shares that were available on a system, via the RegRipper shares.pl
plugin) via the Map Network Drive Wizard (on Windows XP,
right-click the My Network Places icon and choose Map Network
Drive from the drop-down menu), the shares that the user
account was used to connect to will appear in the following
Registry key:

Software\Microsoft\Windows\CurrentVersion\Explorer\Map
 Network Drive MRU

As you can see, this key is an MRU key; on Windows XP sys-
tems, the values listed beneath this key are named for lowercase
letters (a, b, c, and so on) and there is an MRUList value that
provides the MRU listing. Users can also access shares via uni-
versal naming convention (UNC) paths entered into the Run box;
these entries will appear in the following Registry key:

Software\Microsoft\Windows\CurrentVersion\Explorer\RunMRU

On Windows XP, this key maintains its values in a manner
similar to the “Map Network Drive MRU” key (values named
for lowercase letters, MRUList value, and so on). Systems con-
nected to via these means, as well as via the command line,
will lead to an entry for the remote system being added to the
ComputerDescriptions key:

Software\Microsoft\Windows\CurrentVersion\Explorer\
 ComputerDescriptions

200   Chapter 4  Case Studies: Tracking User Activity

The contents of the ComputerDescriptions key will provide an
indication of remote systems to which the user account had been
used to connect, albeit without a date or other associated context.
However, it can be useful in providing an indication that the user
may have been performing “suspicious or unusual activities.”
Windows 7 systems have a TypedPaths key that seems to be

something of a cross between Windows XP’s RunMRU key and
the TypedURLs key used by Internet Explorer. The full path to the
TypedPaths key appears as follows:

Software\Microsoft\Windows\CurrentVersion\Explorer\TypedPaths

The values beneath this key are named url1 and url2, and the
data is a string that can include the UNC path to remote systems.
These values appear in the Windows Explorer Address Bar on
Windows 7 systems.

Preserving Privacy
Tools to protect a user’s privacy have been around almost as long as
Windows has been around. The marketed purpose of these tools, be
they open-source, free, or commercial, is to protect a user’s privacy by
removing all traces of their activity. As you might assume, many of these
tools not only delete files or alter file contents but also delete Registry
keys and values. In some cases, analysts can determine Registry keys
and values that might be valuable sources of information by tracking
these tools. For example, downloading and running some of these tools,
or searching user forums for these tools, will provide some interesting
Registry locations for a variety of potentially useful artifacts.

Keep in mind that there are other ways to connect to sys-
tems remotely, as well. One example is the use of the Virtual
Network Computing (VNC) application, originally from the
Olivetti & Oracle Research Laboratory (ORL) in the United
Kingdom. This application provides access to a remote system
similar to the Remote Desktop Connection, and in addition to
a client application (usually vncviewer.exe) requires an appro-
priate server component to be installed on the remote system.
Similar to other remote access applications, VNC maintains a list
of systems connected to beneath a Registry key, and the path to
that key depends on the version of VNC used. For example, for
VNC version 3 from ORL, the key path is

Software\ORL\VNCViewer\MRU

A variant of the original, RealVNC version 4 maintains its MRU
list in the following key path:

Software\RealVNC\VNCViewer4\MRU

Chapter 4  Case Studies: Tracking User Activity   201

There may be other applications or techniques that can
be used to access systems remotely, and those applications
may maintain their own MRU lists of systems that the user had
accessed. Some that come to mind include GUI-based FTP/file
transfer utilities, for example. As such, you should take steps to
determine if such tools have been installed and used on a system
and if it maintains such an MRU list. Information in an MRU list
may provide indications of other affected systems, and this can
be extremely important when dealing with a prolific intruder (as
in the “Tying It Together” scenario described earlier in this chap-
ter) or with a particularly stealthy and persistent intruder.

Summary
As you can see, there is a great deal of information in the user’s
hives (NTUSER.dat, and on Vista and above systems, USRCLASS.
dat) that will provide indications of not only what the user did but
also when they did it. This can help demonstrate that a system
was in use during a specific period; for example, the creation date
and last modification time of the NTUSER.dat file will provide
indications of when the user account was first used to log into the
system and when it last logged out, respectively, but information
from many of the keys (including key LastWrite times and data
derived from binary and string values) will provide indications of
actions the user took and when they took them. An analyst can
use all of this information to develop an understanding of and
add context to other activity found on the system. As with the
other hive files, analysis of the user’s hives can also assist in deter-
mining if the system was infected with malware, or if the user (or
an intruder) was responsible for the observed activity.
By now, I hope that I’ve done a good job of illustrating to

you, the reader, the immense value that can be derived through
Registry analysis. Over the years, I’ve tracked user and intruder
activity, provided information to obviate the “Trojan Defense,”
and even exonerated falsely accused employees, all by including
Registry analysis in my overall examination.
Keywords: Registry, NTUSER.dat, USRCLASS.dat, UserAssist,

MuiCache, virtualization, RecentDocs, WordWheelQuery, user

References
	 [1]	 A definition of the Run keys in the Windows XP registry. Microsoft Support.

1 December 2007, http://support.microsoft.com/kb/314866.
	 [2]	 My view settings or customizations for a folder are lost or incorrect. Microsoft

Support. 15 July 2009, http://support.microsoft.com/kb/813711 (accessed
15.07.09).

202   Chapter 4  Case Studies: Tracking User Activity

	 [3]	 Y. Zhu, P. Gladyshev, J. James, Using shellbag information to reconstruct
user activities, Digit. Invest. 6 (Supp. 1) (2009). http://cci.ucd.ie/content/
using-shellbag-information-reconstruct-user-activities.

	 [4]	 TraceHunter. The UCD Centre for Cybercrime Investigation. http://cci.ucd
.ie/tracehunter.

	 [5]	 Didier Stevens. http://blog.didierstevens.com/programs/userassist/.
	 [6]	 INSECURE-Mag-10.pdf. [IN]SECURE Mag. (10) (2007). http://www

.net-security.org/dl/insecure/INSECURE-Mag-10.pdf (issue 10, pp. 72–77,
last accessed 3.11.2010).

	 [7]	 ITEMIDLIST structure. Microsoft Developer Network. http://msdn
.microsoft.com/en-us/library/bb773321%28VS.85%29.aspx (accessed
19.10.2010).

	 [8]	 WD2000: general information about Word 2000 instrumented version.
Microsoft Support. http://support.microsoft.com/kb/239062 (accessed
23.10.02).

	 [9]	 Policy settings for the Start menu in Windows XP. Microsoft Support. http://
support.microsoft.com/kb/292504 (accessed 02.07.10).

	[10]	 MojoPac. Wikipedia, http://en.wikipedia.org/wiki/MojoPac.
	[11]	 MokaFive. Wikipedia, http://en.wikipedia.org/wiki/MokaFive.
	[12]	 How to remove entries from the remote desktop connection computer box.

Microsoft Support. http://support.microsoft.com/kb/312169 (accessed
01.11.06).

Index   203

A
Access keyword, 44
ACMru key, 196–197
ActivePerl, 43, 48
Adobe Reader, 175, 176f
Application programming

interface (API), 17, 43, 178
Audit policy, 87f, 89, 90f
AutoRuns, 39–42
GUI
on Windows 7, 40f
on Windows XP, 39f

Offline System dialog, 41f
Autorunsc.exe, 40
and digital signatures, 42

Autoruns.exe, 39–42

B
BagMRU
key, 182
plugins, 183

Batch file, 63–64
Boot configuration data (BCD)
file, 19
hive, 150–152

Browser Helper Objects
(BHOs), 131

C
Cain
“Add NT Hashes from” dialog
in, 99f

Cracker tab, 99f
Tools menu, Syskey
Decoder, 97

CentralProfile value, 139
Class identifier (CLSID), 187
CLI tool, see Command-line

interface tool
ComDlg32
API, 178
LastVisitedMRU, 180

OpenSaveMRU, 179
PGP, 180
zip, 180

Command-line interface (CLI)
tool, 57

Computer Descriptions key, 199
Count subkeys, 184, 185f
CurrentControlSet key, 103–104

D
DateLastConnected values, 146
Debugger value, 134
Device class identifier, 110
Digital signatures, autorunsc.exe

and, 42
DisableMRU
Adobe Reader, 177
ComDlg32
API, 178
LastVisitedMRU, 180
OpenSaveMRU, 179
PGP, 180
zip, 180

cRecentFiles key, 177
Windows Media Player, 177

Dynamic linked library
(DLL), 6, 107

E
EFI model, see Extensible

Firmware Interface model
End-user license agreement

(EULA), 41–42
Event Log, 89
Extensible Firmware Interface

(EFI) model, 150

F
FEMC, see F-Response

Enterprise Management
Console

File system tunneling, 2
find command, 65

Firewall policies, 118–121
FirewallPolicy key
DomainProfile key, 118
StandardProfile key, 118

FirewallRules key, 120
Forensic analysis, 53–80
F-Response, 55–57
MiTeC Registry File Viewer,
57–60

RegRipper, 60–80, 61f
F-Response, 55–57
F-Response Enterprise

Management Console
(FEMC), 55, 56f

FTK Imager Lite, 54, 54f

G
getConfig() function, 74
getDescr() subroutine, 75
get_list_of_values()

subroutine, 77
getShortDescr()

subroutine, 75
getTime() function, 76
getVersion(), 75
Globally unique identifiers

(GUIDs), 115
gmtime(), 76
Grab.pl, 57
Graphical user interface

(GUI), 14–15, 174
for Autoruns, 39, 39f

GUIDs, see Globally unique
identifiers

H
Hive files, registry, 18, 18f, 26
and searches, 24

I
Image File Execution Options

key, 133–134
IrfanView application, 172

Index

Page numbers followed by f indicates a figure and t indicates a table.

204  Index

K
Key LastWrite values, 146

L
LastVisitedMRU, 180
LastVisitedPidMRU key, 181
Least frequency of occurrence

(LFO), 6–8
Live analysis, 36–80
Live registry, querying, 37–42
AutoRuns, 39–42, 39f
Reg.exe, 37–38

LiveView, booting acquired
image with, 97, 102

LM hash, 96–97, 99
Local Security Policy, 87f, 88
Windows XP, 164f

Locard’s exchange principle, 5–6
logMsg() subroutine, 76

M
Mac platforms, 36
Malicious Software Removal

Tool (MRT), 148–150
Malware and Windows registry, 12
Master boot record (MBR), 114
Memory, Registry hives in, 53
Microsoft Developer Network

(MSDN), 150
Microsoft Malware Protection

Center (MMPC), 38
MiTeC Registry File Viewer,

57–60, 58f
Monitoring, Registry, 49–53
MRT, see Malicious Software

Removal Tool
MRU lists, 161–162
MSDN, see Microsoft Developer

Network
MuiCache key
file associations, 194–195
historical data, 193
Windows Vista System, 191,
192f

Mutex, 7

N
Network cards, 141–142, 141f
Network interfaces, 122–124, 123f

NTLM hash, 96–97, 99–100
ntpasswd utility, 102

O
Off-line Registry files, 40
Olivetti & Oracle Research

Laboratory (ORL), 200
OpenSaveMRU, 179
OpenSavePidMRU key

values, 181
OphCrack, 100
Load Encrypted SAM option,
101f

Progress tab, password hashes
in, 101f

ORL, see Olivetti & Oracle
Research Laboratory

P
Parse::Win32Registry module,

72–74, 80
Password-cracking attack,

100, 100f
Password hashes, 96
Password policies, 93
PendingFileRenameOperations

key, 122
Perl, 42–49
Perl Package Manager (PPM), 73
Plug-and-Play (PnP) manager,

110, 115
Plugin Browser, 69–71
for creating Plug-ins File, 71f
UI, 69f

Pluginmain() function, 75
Plug-ins
getConfig() function of, 74
RegRipper, see RegRipper
plug-ins

requesting, 73
samparse.pl, 91–95
writing, 71–78

PnP manager, see Plug-and-Play
manager

Portable devices, 115
Pretty Good Privacy (PGP)

encryption application, 180
Printers, 117–118
ProDiscover, 54

ProfileList key, 90, 137–139, 138f
Psexec.exe, 40

R
RecentDocs, 169–178
Regedit.exe, 37
Reg.exe, 37–38
Registry
nomenclature, 21–23, 23f
redirection, 20
structure, 23–32
value cells, 29–32
structure, 30f, 30t

values, 1
and system behavior, 2
type, 31t

virtualization, 20
Registry analysis, 3–13
challenges of, 11–13
concepts, 5–11
documentation, 9–11
goals, 8–9
least frequency of occurrence,
6–8

Locard’s exchange principle,
5–6

Registry Editor, 14, 14f, 20, 22, 37
on Windows XP, 14, 14f

Registry File Viewer (RFV), 57,
113, 187

MiTeC, 57–60
Registry hives
files, 18, 18f, 26
and searches, 24

in memory, 53
Registry key, 37
cells, 27–29
structure, 28f, 28t

LastWrite times, 38, 41
Registry Monitor, see RegMon
Registry, monitoring, 49–53
RegMon, 51–53
Regshot, 50–51

RegMon, 51–53, 52f
Regrip.bat file, 51–53
RegRipper, 60–80, 61f
log file maintaining by, 76
Rip.pl, 62–66
RipXP.pl, 66–69

Index   205

RegRipper plug-ins, 86, 88, 92,
104–105, 160

Run count, 186
UserAssist key, 185
writing, 71

Regscan.pl, 45
Regshot, 50–51
first stage of, 50f

Relative identifier (RID), 91, 97
Remote Desktop Connection,

199
Remote Desktop Protocol (RDP),

89
Remote system, 38
Restore Point directories, 67
extraction, 67f

RFV, see Registry File Viewer
RID, see Relative identifier
Rip.pl, 62–66, 76
RipXP.pl, 66–69
ROT-13 encryption, 186
ROT-13 substitution

algorithm, 185
Routes, 121–122
rptMsg() subroutine, 76
Run count, 186

S
SafeDllSearchMode, 136
SAM hive, 86–102
user information from,
90–95

Samparse.pl plug-in, 91–95
Security hive, 86–102
data from, 86–90

Security identifier (SID), 86,
138–139

ServiceDll value, 47
Shell extensions
Explorer.exe, 135
Nick’s blog, 135
process tracking, 134
SafeDllSearchMode, 136
shellext.pl plug-in, 136

Shiny object syndrome, 9
SID, see Security identifier
SideBar Gadgets, 39
Signature subkeys, 145, 145f
SkyHook Wireless, 147

sleep() function, 106
Software hive, 124–150
autostart locations, 132–133
file associations, 128–130
Image File Execution Options
key, 133–134

MRT, 148–150
network cards, 141–142, 141f
NukeOnDelete value, 126
ProfileList key, 137–139, 138f
redirection, 128
registry keys in, 127
shell extensions
Explorer.exe, 135
Nick’s blog, 135
process tracking, 134
SafeDllSearchMode, 136
shellext.pl plug-in, 136

UAC, 141
Web browser, 130–132
wireless connections
DateLastConnected values,
146
Key LastWrite values, 146
signatureunmanaged
subkeys, 145, 145f
SkyHook Wireless, 147
tmobile WAP, 147, 148f
wireless interface profile
keys, 144f, 145
wireless interface values, 145f

sprint() function, 77
Stuxnet, 42
System hive, 102–124
CurrentControlSet key, 103–104
DeviceClasses key, 115
DiskClassGUID keys, 116, 116f
file system settings, 124
firewall policies, 118–121
mapping devices to drive
letters, 111–117

MountedDevices key, 110,
112f, 113f, 114
TrueCrypt volumes in, 115f

network interfaces, 122–124
printers, 117–118
routes, 121–122
Select key in, 103f
USB devices, 110–111, 117

VolumeClassGUID keys in,
117, 117f

Windows services, 104–110
System32config directory, 54–55

T
Temporal proximity, 165
Time stamps, 169
Tmobile WAP, 147, 148f
Toolkits, 78–79
Tracehunter application, 182
Tracking user activity, 161–195
MRU lists, 161–162
run, 162–165

Trojan defense, 197–198
TypedPaths key, 200

U
UAC, see User Account Control
UltraEdit, 74
Unmanaged subkeys, 145, 145f
USB devices, 110–111, 117,

165–166
in EnumUSBStor key, 110f
mapping to drive letters,
111–117

User account
adding password hint to, 93, 93f
case of disappearing, 94

User Account Control (UAC), 141
User Account Management, 139
User passwords, cracking, 95–102
UserAssist key, 183–190
Count subkeys, 184, 185f
forensics assist, 184
RegRipper plugins, 185
ROT-13 substitution
algorithm, 185

Windows 7, 184, 185f
and XPMode, 189

USRCLASS.dat, 182

V
Vigenere encryption, 186
Virtual Network Computing

(VNC), 200
VNC, see Virtual Network

Computing
VPN solution, 188

206  Index

W
WAP, see Wireless access point
Window Washer, 80
Windows dynamic-linked library

(DLL), 48
Windows Management

Infrastructure (WMI), 42
Windows Media Player File

Menu Item, 17f
Windows PowerShell, 42
Windows Registry, 1, 14–23
malware and, 12
purpose of, 15–17

Windows Registry on disk,
location of, 18–21

Windows scripting, 42
Windows Scripting Host (WSH),

42
Windows Vista System, 191,

192f
Windows XP
local security policy, 164f
RecentDocs, 169–178
Recycle Bin properties, 127f
Registry Editor on, 14, 14f
SAM keys, 91f
searches, 166–169, 167f, 168f

Win32::TieRegistry module, 25,
43, 73

Win32/Verst, 38

Wireless access point (WAP), 6,
24, 32

Wireless connections
DateLastConnected values, 146
Key LastWrite values, 146
network properties, 142, 143f
SkyHook Wireless, 147
tmobile WAP, 147, 148f

Wireless interface profile keys,
144f, 145

Wireless interface values, 145f
Writing plug-ins, 71–78

X
XPMode, 166, 189

	Cover
	Copyright
	Contents
	Preface
	Acknowledgments
	About the Author
	1 Registry Analysis
	2 Tools
	3 Case Studies: The System
	4 Case Studies: Tracking User Activity
	Index

